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Rotational self-diffusion in suspensions of
charged particles: simulations and revised
Beenakker–Mazur and pairwise additivity
methods†

Karol Makuch,*a Marco Heinen,b Gustavo Coelho Abade‡c and Gerhard Nägeled

We present a comprehensive joint theory-simulation study of rotational self-diffusion in suspensions of

charged particles whose interactions are modeled by the generic hard-sphere plus repulsive Yukawa (HSY)

pair potential. Elaborate, high-precision simulation results for the short-time rotational self-diffusion

coefficient, Dr, are discussed covering a broad range of fluid-phase state points in the HSY model phase

diagram. The salient trends in the behavior of Dr as a function of reduced potential strength and range,

and particle concentration, are systematically explored and physically explained. The simulation results are

further used to assess the performance of two semi-analytic theoretical methods for calculating Dr. The

first theoretical method is a revised version of the classical Beenakker–Mazur method (BM) adapted to

rotational diffusion which includes a highly improved treatment of the salient many-particle hydrodynamic

interactions. The second method is an easy-to-implement pairwise additivity (PA) method in which the

hydrodynamic interactions are treated on a full two-body level with lubrication corrections included. The

static pair correlation functions required as the only input to both theoretical methods are calculated

using the accurate Rogers–Young integral equation scheme. While the revised BM method reproduces

the general trends of the simulation results, it significantly underestimates Dr. In contrast, the PA method

agrees well with the simulation results for Dr even for intermediately concentrated systems. A simple

improvement of the PA method is presented which is applicable for large concentrations.

1 Introduction

Short-time translational diffusion properties of colloidal sus-
pensions such as the translational self- and collective diffusion
coefficients and the wavenumber-dependent hydrodynamic
function, and short-time rheological properties including the
high-frequency viscosity, have been the subject of numerous
experimental studies.1–7 These studies have been accompanied
over the past few years by computer simulation (see, e.g. ref. 8
and 9) and theoretical studies.10–19

In addition to the diffusion properties associated with
translational degrees of freedom of the particles, the colloidal

short-time dynamics is characterized by transport coefficients
related to rotational degrees of freedom. For monodisperse
globular particles with spherically symmetric direct pair inter-
action, the respective key coefficient is the short-time rotational
self-diffusion coefficient Dr. This coefficient depends on the
internal hydrodynamic structure of the particles, and via the
direct and solvent-mediated hydrodynamic interactions (HIs)
also on the particle concentration and strength and the range
of the effective pair potential.

Experimental studies of the short-time rotational self-diffusion
coefficient, Dr, in concentrated suspensions of spherical particles
are based on techniques which can distinguish different particle
orientations. These methods include depolarized dynamic light
scattering on optically anisotropic particles,3 nuclear magnetic
resonance,20 time-resolved phosphorescence anisotropy21–23

and polarized fluorescence recovery after photobleaching.24

Most experimental work on rotational diffusion has been on
monodisperse colloidal systems of neutral hard spheres and
charge-stabilized particles, and here most notably on optically
anisotropic fluorinated Teflon spheres,3 and silica and polystyrene
spheres labeled by a phosphorescent dye.21–24 In addition, binary
mixtures of charge-stabilized particles have been studied where
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one component is very dilute.21–23 Since the particles are charged in
most of the experimentally investigated suspensions, a systematic
theoretical-simulation study of rotational self-diffusion in systems
with electro-steric pair interactions is on demand.

A comprehensive analysis of the coefficient Dr in spherical-
particle suspensions is of importance not only in its own right.
The results of this analysis can serve as a reference for the study of
the orientationally averaged rotational self-diffusion in dispersions
of charge-stabilized particles with non-isotropic direct interactions
and shapes such as Gibbsite platelets,25 and with non-spherical
surface hydrodynamic boundary conditions such as for patchy
colloids (e.g., Janus particles) and proteins (e.g., lysozyme). The
comparison with generic theoretical results for spherical particles
allows us to investigate the significance of specific anisotropic
interaction and surface boundary condition contributions.
A practical application of a comprehensive analysis of Dr in
charge-stabilized spherical-particle dispersions can be the
micro-rheological estimate of the high-frequency viscosity
based on the generalized Stokes–Einstein–Debye relation, if
appropriately combined with the theoretical analysis of deviations
from this approximate relation (see, e.g., ref. 22 and 26).

While the short-time transport properties of spherical-particle
dispersions are expressible theoretically as rather simple isotropic
equilibrium averages invoking hydrodynamic mobility tensors, the
difficulty in their actual calculation arises from the long-ranged
many-body HIs between the particles. The slowing influence of the
HIs is particularly pronounced when particles are in relative motion
close to each other.

There exist two major theoretical solution schemes which have
been used in the past for the calculation mainly of translational
short-time diffusion properties and the high-frequency viscosity.
The first one is the so-called pairwise additivity (PA) approximation.
In its most complete version, all two-body HIs contributions are
accounted for including lubrication terms, but three-body and
higher order interaction contributions are disregarded. By con-
struction, its application range is usually limited to semi-dilute
systems, and in particular to charge-stabilized suspensions that are
often hydrodynamically dilute even if the direct interactions are
strong.9 Regarding short-time self-diffusion coefficients and the
high-frequency viscosity, however, the PA method can be profitably
used also at higher concentrations, owing to the steep decay, with
increasing inter-particle distances, of the hydrodynamic mobility
tensors associated with these quantities.

Different from the PA scheme, the semi-analytical method of
calculating short-time diffusion and viscosity properties by
Beenakker–Mazur,13–15 commonly referred to as the BM or dg
method, is in principle applicable also to concentrated suspen-
sions. To date, it has been considered to be the most compre-
hensive and versatile statistical physics approach to colloidal
short-time dynamics. It is a mean-field-type approximation
method which accounts for many-body HI contributions in
the form of so-called ring self-correlation diagrams, without
an account of lubrication effects. In its standard second-order
version, the only required external input is the static structure
factor, S(q), as a function of scattering wavenumber q. A major
short-coming of the original BM method is its poor treatment

of the translational short-time self-diffusion coefficient Dt. This
deficiency can be overcome by using a more accurate method
for the self-part by using, e.g., the PA approximation result for
Dt for lower concentrated systems. The self-part corrected BM
scheme has been applied both to suspensions of neutral and
charge-stabilized particles,7,9,26,27 for the calculation of the hydro-
dynamic and collective diffusion functions, and the high-frequency
viscosity. It was applied recently also to suspensions of hydro-
dynamically structured particles,28 and with certain additional
approximations also to the cooperative diffusion in binary hard-
sphere mixtures.29 The predictions for these systems are
decently good, with inaccuracies revealed at all concentrations.
These inaccuracies can be partially attributed to the approximate
treatment of the HIs in the original BM method, and partially to
the invoked mean-field approximation. In recent work reported
by Makuch and Cichocki,30 the approximation steps in the
original derivation of the BM method have been reduced, in
particular by accounting for a large number of hydrodynamic
multipoles in the truncated multipolar matrices which are
extrapolated to infinite order. The observation that the revised
BM method by Makuch and Cichocki, with its improved hydro-
dynamic mobility tensor treatment, has not resulted in a systematic
improvement of the hydrodynamic function and high-frequency
viscosity predictions points to a fortuitous cancellation of errors
in the various approximation steps of the original method by
Beenakker and Mazur.

Theoretical and simulation work on rotational self-diffusion
has been done so far mainly for the two opposite limiting cases
of dispersion of uncharged hard spheres, and low-salinity
charge-stabilized suspensions, respectively, where the screening of
the electrostatic interaction is weak. Very little is known about the
broad transition region formed by dispersions with intermediate
salinities.

Simulation work on rotational self-diffusion has dealt mainly
with monodisperse systems of non-permeable26,31,32 and permeable
hard spheres.33 Charge-stabilized systems have been addressed in
few simulation studies only,26,31 focussing on low-salinity systems.

The short-time rotational self-diffusion coefficient in hard-sphere
suspensions was studied theoretically by various groups using
truncated hydrodynamic cluster expansions up to quadratic order
in the particle volume fraction f.3,34–36 The high-precision result by
Cichocki et al.,37

Dr

Dr
0

¼ 1� 0:631f� 0:726f2 þO f3
� �

; (1)

includes a lubrication correction both for the two-body and
three-body HI contributions. Here, Dr

0 = kBT/(8pZa3) is the
single-particle rotational diffusion coefficient of a no-slip
sphere of hydrodynamic radius a, and f is the particle volume
fraction. Quite interestingly, and as shown in ref. 26 and 33, the
explicit quadratic form in eqn (1) describes simulation and
experimental data remarkably well for volume fractions up to
the hard-sphere freezing transition value ff = 0.494, indicating
that higher-order virial coefficients beyond the two- and three-
body ones are small or mutually cancel out. Whether the good
description of the (orientationally averaged) hard-sphere Dr by
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two-body and three-body HIs contributions alone carries over to
the high-concentration equilibrium crystal or metastable fluid
phase regions is an open question remaining to be answered in
a future simulation study.

The BM method has been applied to the rotational self-
diffusion of uncharged hard spheres only, in a single paper by
Treloar and Masters38 where approximations along the line of
those introduced by Beenakker and Mazur have been made.
There has been so far no application of this method to rotational
self-diffusion in charge-stabilized suspensions. The latter systems
have been analyzed in the weak electrostatic screening regime
using a simplified PA approximation approach based on a
truncated inverse distance expansion of the two-body rotational
mobility tensors, by considering in addition the leading-order
long-distance hydrodynamic three-body term.22,39,40 For charged
particles with strong long-distance repulsion, the remarkable
scaling relation,

Dr

Dr
0

¼ 1� arf2; (2)

with ar E 1.3 has been obtained by this simplifying approach.
The comparison with Lattice-Boltzmann31 and accelerated Stokesian
dynamics simulation results26 has shown that this relation applies
accurately up to f E 0.3. Different from eqn (1) valid for neutral
hard spheres, the scaling relation in eqn (2) is not a second-order
virial expansion result. It originates basically from the f�1/3

concentration scaling of the radius, rm, of the nearest-neighbor
shell of particles in low-salinity systems.26

The present article reports on the first comprehensive
theoretical and simulation study of short-time rotational diffu-
sion in suspensions of spherical particles whose static pair
interactions are modeled by the hard-sphere plus repulsive
Yukawa (HSY) pair potential. The generic HSY model has many
applications ranging from classical charge-stabilized colloidal
particle suspensions such as silica, fluorinated Teflon and
polystyrene sphere systems to ionic microgels and globular
protein solutions. We systematically explore a broad range of
systems with fluid-like microstructure following two distinct
paths in the universal HSY phase diagram. The rotational self-
diffusion coefficient Dr along these two paths is calculated
using three different methods, and salient trends in the behavior
of Dr are identified and physically explained.

The first employed method is an elaborate hydrodynamic
force multipole simulation method encoded in the HYDRO-
MULTIPOLE program package.37 Using this simulation tool, we
have generated high-precision results for Dr in a broad range of
volume fractions and pair potential strengths, for two largely
different screening parameters characteristic of bcc and fcc
type ordering tendencies, respectively, for systems near the
universal fluid-solid freezing line. These simulation results
have been obtained at the expense of a substantial numerical
effort. They are used also as benchmarks for the accuracy
assessment of the two additionally employed semi-analytic
methods for calculating Dr.

The second method is a revised version of the original BM
method for Dr by Treloar and Masters.38 Different from their

original method, in our newly derived revised BM method
various approximation steps have been avoided. This includes
in particular our highly improved treatment of the salient
hydrodynamic interactions. The performance of the revised
BM method is assessed by the comparison with the simulation
results for Dr.

As the third method, we use a simplifying pairwise additivity
(PA) method in which the rotational hydrodynamic mobility
tensors are treated on the full two-body level including lubrication,
without long-distance mobility tensor truncations being used as in
earlier applications of the PA method to the HSY model. As we are
going to show in comparison with our comprehensive simulation
results, this semi-analytic and easy-to-implement method performs
surprisingly well even up to intermediately large concentrations,
with the trends of Dr being well reproduced. We further present an
empirically motivated ad hoc improvement of the PA method
applicable for concentrated suspensions.

Both the revised BM and the PA methods require the radial
distribution function (RDF), g(r), of the HSY model as the only
input. The RDF and its associated static structure factor S(q) are
calculated using the Rogers–Young (RY) integral equation
scheme known to be quite accurate for HSY systems. We discuss
the shapes and general trends of the static pair functions to the
extent required for the physical understanding of the general
behavior of Dr.

The article is organized as follows: in Section 2, we give the
essentials of short-time rotational self-diffusion. Section 3
includes the description of the HSY model with employed
interaction parameters, and a discussion of the RY radial
distribution functions used in the two semi-analytic methods
of calculating Dr. The employed simulation method is briefly
described in Section 4. The revised Beenakker–Mazur method and
the PA method of calculating Dr are explained in Sections 5 and 6,
respectively. Our results for the short-time rotational self-diffusion
coefficient are presented and discussed in Section 7. The summary
and final conclusions are contained in Section 8. Details of the
derivation of the revised BM method, and of the hydrodynamic
mobility matrices used in this method are given in part S1 and S2,
respectively, of the ESI.†

2 Short-time rotational self-diffusion
coefficient

We consider rotational diffusion in a fluid-state suspension of
monodisperse spherical Brownian particles immersed in a
structureless Newtonian solvent of shear viscosity Z, on a
coarse-grained Brownian time scale exceeding the rotational
and translational momentum relaxation times tt

B B tr
B, respectively,

by several orders of magnitude.3,41 On this scale, particles and fluid
move quasi-inertia-free, and the solvent-mediated HIs act quasi-
instantaneously. The configurational evolution of the particles is
then governed by the generalized Smoluchowski equation42–44 for
the N-particle probability density function p(R1,. . .,RN,û1,. . ., ûN,t) of
the sphere center positions R1,. . .,RN and orientations û1,. . .,ûN at
time t. The associated low-Reynolds-number incompressible fluid
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flow is described by the linear stationary Stokes equation.45 The
hydrodynamic ingredients to the generalized Smoluchowski
equation derived from the Stokes equation are the translational–
rotational mobility tensors quantifying the linear relations,

Ui ¼
XN
j¼1

ltt
ij R1 . . .RNð Þ � Fj þ

XN
j¼1

ltr
ij R1 . . .RNð Þ � Tj ; (3)

Xi ¼
XN
j¼1

lrt
ij R1 . . .RNð Þ � Fj þ

XN
j¼1

lrr
ij R1 . . .RNð Þ � Tj ; (4)

between the forces and torques, Fj and Tj, respectively, acting
on the colloidal spheres, and the resulting translational and
rotational particle velocities Ui and Xi. For the uniformly assumed
no-slip hydrodynamic surface boundary condition, the mobility
tensors are independent of the particle orientations.

In depolarized dynamic light scattering,3,46 the short-time
rotational self-diffusion coefficient of Brownian spheres is
determined from the initial decay of the measurable orientational
self-correlation function, for correlation times t within tr

B { t { 1/Dr
0

where particle orientations and positions have changed by very small
amounts only, on the characteristic length scale of the suspension.
For a concentrated isotropic suspension, Dr can be computed as
the ensemble average of the trace of the rotational mobility
tensor expression,47

Dr ¼ kBT

3
lim
1

Tr
1

N

XN
i¼1

lrr
ii R1 . . .RNð Þ

* +" #
: (5)

where h� � �i is an equilibrium ensemble average, and where the
thermodynamic limit N -N at fixed particle concentration has
been taken. It should be noted that Dr as given in eqn (5) is, for
non-zero concentrations, different from the initial slope of the
mean-squared displacement of the particle orientation unit
vector ûi(t).

3 Static correlations of HSY particles

The pair potential in the hard-sphere plus repulsive Yukawa
(HSY) model is given by

u rð Þ
kBT

¼
g
expf�kðr� sÞg

r=s
; r4 s

1; ros

8><
>: ; (6)

where g Z 0 is the coupling parameter of the Yukawa-type
potential part, s = 2a the hard-core diameter, r the center-to-
center distance between two spheres, kB the Boltzmann con-
stant, and T the absolute temperature. The range of the HSY
potential is set by the inverse of the screening parameter kZ 0.
In the infinite screening limit k - N, or likewise for g = 0, the
hard-sphere potential is recovered. In the opposite limit k - 0 of
zero-screening, a one-component plasma-like system is described.

Dispersions which can be described by the HSY model range
from charge-stabilized suspensions of rigid colloidal spheres48 to
globular protein solutions49 and dusty plasmas.50 The HSY potential
form is in general a good approximation to the state-dependent

effective pair-potential between charged colloidal spheres. The
latter is obtained from integrating out the degrees of freedom of
the microions and solvent molecules. In many experimentally
encountered suspensions, the short-ranged van der Waals
attraction neglected in the HSY model is of no relevance, either
since the electrostatic repulsion between the particles is strong
enough to prevent near-contact configurations,7 or the solvent
dielectric constant nearly matches that of the suspended
particles,51–54 or the particles are sterically stabilized by grafted
polymers.55 The complicated dependencies of the state-
dependent potential parameters g and k in charge-stabilized
suspensions on the salt ion concentration, colloidal volume
fraction, and bare and effective colloidal surface charges are the
topic of on-going research that covers experiments, theory and
computer simulations.56–67 The present work is not concerned
with a first-principles determination of the state-dependence
and here in particular the concentration dependence of g and k,
with the two reduced interaction parameters influenced also by the
specific electrochemistry at the surfaces of the dispersed particles.
Instead, g and k are treated quite generally as individually variable
parameters. Note further that the direct interactions in the HSY
model are treated as pairwise additive. Non-pairwise additivity
effects in the direct interaction of charged colloidal particles are
usually quite small.68

According to eqn (6), the thermodynamic state of the HSY
model, and likewise the RDF as a function of r/s, are fully
characterized by three independent non-dimensional parameters
which can be taken as ks, g and the particle volume fraction

f = ps3n/6, (7)

where n is the number density of particles. For truly charge-
stabilized suspensions, however, the physical hard-core is
masked by the strong Yukawa repulsion, i.e. the likelihood
for two or more spheres being in contact is negligibly small.
The appropriate physical length scale for these so-called point-
Yukawa systems is the geometric mean particle distance hri =
n�1/3, and the thermodynamic state and in particular the phase
boundaries are determined by two parameters only. The phase
boundaries of the point-Yukawa system look particularly sim-
ple, with nearly straight lines, in the two-dimensional (l, T̃)
phase diagram representation69,70 where

l = khri, (8)

~T ¼ kBT

u hrið Þ; (9)

are the reduced screening parameter and the inverse reduced
Yukawa interaction parameter, respectively. In terms of these para-
meters, the dominating Yukawa-part of the HSY potential reads

u xð Þ
kBT

¼ expf�l x� 1ð Þg
~Tx

; (10)

where x = r/hri with x 4 s/hri. If considered as a function
of x and qhri, the RDF g(r) and static structure factor S(q) of
point-Yukawa particles are uniquely determined by the state
point (l, T̃).
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A sketch of the (l, T̃) phase diagram of point-Yukawa
particles is given in Fig. 1. It consists of a high-temperature
supercritical fluid phase, separated by a fluid-solid coexistence
boundary from a face-centered-cubic (fcc) solid phase region at
high screening, and a body-centered-cubic (bcc) solid phase
region at low screening. There is a single triple point of three-
phase coexistence at lt E 6.9.69,71 According to ref. 72 and 73
the fluid-solid coexistence boundary determined in simulations
is well reproduced by the RY integral equation scheme in
conjunction with the Hansen–Verlet criterion S(qm) = 3.1 for
the onset of freezing, where qm is the wavenumber position of
the static structure factor maximum.

The full phase diagram of the HSY model including systems
with significantly non-zero RDF contact values g(r = s+) 4 0 is
more complicated, and requires the specification of a third
reduced parameter in addition to, say, l and T̃, namely the
volume fraction f. As shown in simulations by Hynninen and
Dijkstra,71 there is then an additional triple point at very small
l associated with large volume fractions where the fcc phase is
favored. Provided the coupling parameter in eqn (6) is suffi-
ciently large (i.e. g Z 20) and f sufficiently small (i.e. f o 0.5),
the phase coexistence lines of the HSY model can be essentially
mapped to those of the point-Yukawa model, by expressing
g and ks in eqn (6) in terms of {l, T̃, f} using hrip f�1/3. Note
that for T̃ 4 1, the potential energy of the Yukawa potential part
at mean particle distance is smaller than the thermal energy
kBT. With increasing T̃ and fixed l and f, the importance of
the Yukawa potential part diminishes, and the suspension
becomes increasingly hard-sphere like.

The present study of short-time rotational diffusion is
restricted to the fluid phase regime. However, it is interesting
to compare changes in rotational diffusion when the fluid-bcc

and fluid-fcc parts of the fluid-solid coexistence lines are
approached, respectively, upon decreasing the reduced inverse
Yukawa interaction parameter T̃. To this end, in our simulation
and theoretical calculations of Dr we follow two distinct path-
ways indicated by the two arrows in the (l, T̃) diagram in Fig. 1.
The left pathway is the vertical line along l = 3 with the reduced
inverse Yukawa interaction parameter series T̃ A {0.1, 0.2, 0.5,
1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}, where the smallest value
T̃ = 0.1 describes a state point close to the fluid-bcc phase
boundary line part of the point-Yukawa phase diagram. The
right pathway in the figure is the line along l = 8 with values
T̃ A {0.4, 0.6, 0.8, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}. Here,
the lowest value T̃ = 0.4 is close to the fluid-fcc phase boundary
line part. For both pathways, the volume fraction is selected as
f = 0.05, 0.15, 0.25 and 0.35, respectively. This amounts to
simulation-based calculations of Dr at 104 different fluid-phase
state points. The static structure factors S(q) and the associated
RDFs g(r) of all HSY systems explored in the present work have
been calculated using the RY integral equation scheme
described in the following subsection. We have checked that
each of the considered S(q)’s qualifies as a liquid-state structure
factor according to the empirical Hansen–Verlet criterion. This
criterion states that at freezing into a solid phase, S(qm) attains
a value near 3.1 for point-Yukawa systems. For HSY systems
with RDF contact values g(s+) significantly larger than zero, the
values of S(qm) at freezing vary in between 3.1 and 2.85, with the
lower value attained by a pure hard-sphere system.70,74–76

3.1 Rogers–Young scheme

The revised dg method and the PA scheme require g(r) as the
only input. We obtain g(r) numerically by solving the Ornstein–
Zernike equation,77

hðrÞ ¼ cðrÞ þ n

ð
d3r0c r0ð Þh r� r0j jð Þ (11)

for a three-dimensional, homogeneous and isotropic fluid in
conjunction with the approximate RY78 closure relation invok-
ing the HSY pair potential,

uðrÞ
kBT

þ ln gðrÞ ¼ ln 1þ exp hðrÞ � cðrÞ½ � f ðrÞf g � 1

f ðrÞ

� �
: (12)

Here, h(r) = g (r) � 1 is the total correlation function, c(r) is the
direct correlation function, and n is the particle number
density. Eqn (12) includes the mixing function f (r) = 1 �
exp{�ar} with the non-negative inverse length parameter a.
This parameter is determined self-consistently by requiring
equality of the isothermal osmotic compressibilities derived
from the compressibility equation,

@Pc= kBTð Þ
@n

� �
T

¼ 1� 4pn
ð1
0

drr2cðrÞ (13)

and the numerically differentiated virial pressure equation,

Pv

nkBT
¼ 1þ 2p

3
n s3g sþð Þ � 1

kBT

ð1
0

drr3gðrÞduðrÞ
dr

� 	
; (14)

Fig. 1 Schematic (l, T̃) phase diagram of the hard-core plus repulsive
Yukawa (HSY) system with masked hard-core interactions (point-Yukawa
system). The arrows indicate the two fluid-state pathways towards the
fluid-bcc and fluid-fcc phase boundary lines, respectively, followed in our
calculations of the short-time rotational self-diffusion coefficient. The left
arrow corresponds to l = 3 and T̃ = 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100,
200, 500, 1000, and the right one to l = 8 and T̃ = 0.4, 0.6, 0.8, 1, 2, 5, 10,
20, 50, 100, 200, 500, 1000. The volume fractions considered in both
pathways are f = 0.05, 0.15, 0.25, 0.35.

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
6 

M
ay

 2
01

5.
 D

ow
nl

oa
de

d 
by

 U
ni

w
er

sy
te

t W
ar

sz
aw

sk
i o

n 
08

/0
6/

20
15

 1
2:

06
:3

7.
 

View Article Online

http://dx.doi.org/10.1039/c5sm00056d


Soft Matter This journal is©The Royal Society of Chemistry 2015

where Pc and Pv are the isothermal osmotic pressure in the
compressibility and virial equation, respectively.

In using eqn (14), we neglect any thermodynamic state
dependence of the pair potential. As noted further up this
section already, a consequence of integrating out the microionic
and solvent degrees of freedom is that the resulting effective pair
potential of the HSY form is in general dependent on the particle
concentration n and the system temperature T (see, e.g., ref. 67).
This gives rise to additional terms on the right-hand-side of
eqn (14) invoking the partial derivative of u(r) with respect to
n and T. The precise form of the effective pair potential depends
on the specific electro-chemical surface properties of the colloidal
spheres, and the specific properties of the suspending electrolyte
solution. Since we are not dealing here with the microscopic
theory of effective colloidal pair potentials but with the generic
behavior of Dr, in taking the concentration derivative of Pv in
eqn (14) we disregard any specific state dependence of u(r), and of
the RY mixing parameter a.

Our numerical solution of the RY integral equation for broad
ranges of volume fractions, screening and interaction parameters
has been facilitated by using a spectral solver described in ref. 66.
The good accuracy of the RY approximation for HSY systems
was demonstrated in various studies26,41,53,54,79,80 comprising
comparisons with simulation and experimental data.

3.2 Radial distribution function in the RY scheme

Owing to the rather steep O(1/r6) long-distance decay of the
rotational mobility tensor lrr

ii associated with Dr (see Section 6),
the rotational diffusion coefficient is quite sensitive to the
shape of the RDF at small particle separations. This motivates
the following discussion on the behavior of g(r) in the (l, T̃, f)
fluid-phase parameter regime of the HSY model explored in
this work.

In Fig. 2, the RY calculated RDFs (upper panel) and structure
factors (lower panel) for f = 0.25 and l = 8 are depicted for
different inverse Yukawa interaction parameters T̃ as indicated
in the figure. The strength of the Yukawa potential at the mean
particle distance, in units of the thermal energy, decreases with
increasing T̃. For the largest considered value T̃ = 1000, the HSY
system at f = 0.25 reduces essentially to a hard-sphere fluid,
with the RDF maximum g(rm) located at contact distance rm = s.
With decreasing T̃, the increasingly strong Yukawa repulsion
reduces the relative probability, g(s+), of two-sphere contact,
and it also lowers the compressibility factor S(0). Moreover, the
nearest neighbor shell of spheres around the radial distance rm

where g(r) has its maximum moves outwards and sharpens with
decreasing T̃. For the lowest considered value T̃ = 0.4 corres-
ponding to a fluid state point near the fluid-fcc phase boundary
line, the hard core of the particles is masked and rm E hri.

A measure of the importance of the hard-core part of u(r)
relative to the Yukawa part is given by the RDF contact value g (s+)
plotted in Fig. 3 for all considered fluid-phase points (l, T̃, f).
With increasing T̃, the relative strength of the Yukawa potential
part ceases, and a plateau region of the RDF contact value is
approached, characteristic of hard-sphere-like behavior. This is
obviated by the horizontal line segments shown at the right

ordinate of the figure which mark the Carnahan–Starling (C–S)
RDF contact values of hard spheres with vanishing Yukawa tail
repulsion (g = 0), given by

gCSHS sþð Þ ¼
1� 1

2
f

1� fð Þ3
: (15)

We quote in addition the C–S equation,

SCS
HSðq ¼ 0Þ ¼ 1� fð Þ4

1þ 2fð Þ2 þ f3 f� 4ð Þ
; (16)

for the compressibility factor of hard spheres. The origin of the
excellent accuracy of the semi-phenomenological C–S expres-
sions for hard spheres is still a riddle, and a topic of ongoing
research.81 We emphasize that the employed RY scheme is a
quite accurate but nevertheless approximate integral equation
scheme. Its partial thermodynamic self consistency does not
imply, e.g., perfect agreement of the RY contact value for hard
spheres with the practically exact Carnahan–Starling result in
eqn (15). In fact, the RY scheme is lacking thermodynamic self-
consistency with respect to any thermodynamic property except
for the pressure. An extended version of the RY scheme (named
ERY scheme) has been introduced by Carbajal-Tinoco,82 which
further improves the accuracy of the original RY scheme by
introducing a second mixing parameter. In this more elaborate
scheme, which however is not applicable to pure hard spheres

Fig. 2 Upper panel: RDF, g(r), predicted by the Rogers–Young scheme for
a HSY fluid system with l = 8 and f = 0.25. Four inverse Yukawa interaction
parameters T̃ = 0.4, 1, 5, 1000 are considered as indicated. The horizontal
line segment marks the Carnahan–Starling (C–S) contact value of hard
spheres given by eqn (15). Lower panel: static structure factor, S(q),
corresponding to the displayed radial distribution functions in the upper
panel. Horizontal line segment: C–S compressibility factor of hard spheres
according to eqn (16). Pair distance r and wavenumber q are scaled with
the geometric mean particle distance hri.
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without soft repulsion, the two mixing parameters are determined
by enforcing thermodynamic self-consistency both regarding the
pressure and the excess internal energy per particle. For the sake of
simplicity and numerical stability, we have refrained from using the
ERY scheme in the present work.

On first sight, it is surprising that in accordance with Fig. 3,
the likelihood of observing two closely spaced particles is larger
for l = 3 than for l = 8, for equal f and T̃, even though the
screening length of the Yukawa tail is significantly shorter in
the latter case. This can be understood as follows: while the
potential value bu(x = 1) = 1/T̃ at r = hri is equal for both l values,
the repulsive force, �bdu/dx(x = 1) = (1 + l)/T̃, is larger in the
l = 8 case. Taken together with the substantially steeper rise of
the Yukawa potential with decreasing x for l = 8, this explains
the lower probability of finding two closely spaced particles. For
fixed l, the small-T̃ region where the hard core is masked (i.e.
where g(s+) E 0) shrinks with increasing f, as it is expected.

For the upcoming discussion of Dr, it is relevant to investigate
how the principal RDF maximum g(rm), and its position rm,
depend on the pair potential parameters. We notice first from
Fig. 2 that rm equals the smallest radial distance r Z s where the
derivative of g(r) turns negative.

The dependence of g(rm) and rm on T̃ is shown in Fig. 4 for
l = 3, and in Fig. 5 for l = 8. According to both figures, for fixed
f and therefore fixed mean particle distance hri, the inverse
principal peak location, hri/rm, increases with decreasing
Yukawa potential strength, i.e. increasing T̃, towards the limiting
inverse reduced contact distance, hri/s, of neutral hard spheres.
The limiting hard-sphere values for the considered f values are
indicated by the horizontal solid line segments at the large-T̃ end
of the upper panels in Fig. 4 and 5. Except for l = 8 and the

lowest considered volume fraction f = 0.05, the hard-sphere
limiting values have been all reached for T̃ = 1000. It is for this
latter (l, f) point where the minimum of g(rm) as a function of T̃

Fig. 3 Contact value, g(s+), of the HSY-RY g(r) as a function of T̃, for
volume fractions f = 0.05, 0.15, 0.25, 0.35 as indicated. Upper panel: l = 3.
Lower panel: l = 8. Horizontal line segments for large T̃ mark the C–S
hard-sphere contact values according to eqn (15).

Fig. 4 Upper panel: inverse reduced position, hri/rm, of the principal peak
of g(r) as a function of T̃, for l = 3 and values of f as indicated. The
horizontal solid line segments at large T̃ indicate the inverse reduced
contact distance, hri/s, for the respective f values. Lower panel: principal
peak value, g(rm), of the RDF for the same set of parameters. The dashed
horizontal line segment at small T̃ indicates the one-component plasma
isochoric freezing transition value attained in the zero-screening limit
l - 0 (see ref. 73).

Fig. 5 Upper and lower panels: the same as in the upper and lower panel
of Fig. 4, respectively, but for l = 8.
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observed in all depicted curves in the lower panels of Fig. 4 and 5
has its largest T̃ value. The minimum in g(rm) originates from the
competition of Yukawa repulsion and excluded volume inter-
action (see here again Fig. 2 for g(r)). This competition is
enforced with increasing concentration, reflected by a more
pronounced minimum moving inwards to smaller values of T̃.

Note that the only exception from the monotonic behavior of
rm as a function of T̃ is the curve in the upper panel of Fig. 4 for
l = 3 and f = 0.05. To explain the peculiar shape of this curve, in
Fig. 6 we plot associated RDFs, for values of T̃ as indicated. For
large T̃ Z 50, the principal maximum of g(r) is located close to
r = s. The maximum decreases and is shifted to larger distances
rm with decreasing T̃. At T̃ = 20, no localized principal maximum
is present any more, and g(r) monotonically increases with
increasing r so that rm = N. When T̃ is further decreased, the
strengthened Yukawa repulsion causes the reappearance of a
RDF maximum at a distance rm significantly larger than s which
is decreasing towards hri.

4 Simulation method

We have calculated Dr for no-slip spheres to high precision using a
hydrodynamic multipole method corrected for lubrication,37,83–85

and encoded in the HYDROMULTIPOLE program package.37

The values for Dr have been determined from equilibrium
configuration averages using typically N = 256 spheres interacting
with the HSY potential, and placed in a periodically replicated
cubic simulation box. At least 150 independent and fully equili-
brated configurations for each parameter set (l, T̃, f) were used in
calculating Dr based on eqn (5), generated by canonical ensemble
Monte Carlo simulations. This has resulted in a low statistical
relative error of less than 0.001. As reported in ref. 33, the
calculated values for Dr(N) using the periodic simulation box with
N particles are not critically dependent on the system size. There-
fore, no system size correction extrapolating to an infinitely large
system is required as for short-time collective diffusion properties.
Our elaborate simulation study for the two pathways in the HSY
model phase diagram depicted in Fig. 1 covers in total 104
different fluid-phase state systems.

5 Revised Beenakker–Mazur method

In addition to our simulation analysis, we have calculated Dr

using the revised Beenakker–Mazur (BM) method. Our revised
version of this statistical physics approach, which has been
extended by Treloar and Masters to the short-time rotational
diffusion of hard spheres,38 differs from the original one in that
various approximation steps made originally have been avoided.
This concerns in particular our severely improved treatment of
the salient hydrodynamic interactions which in the original BM
and Treloar and Masters method were described quite approxi-
mately. For details of how the rotational and translational
hydrodynamic mobility tensors appearing in eqn (4) and (3)
are calculated in the revised BM method, we refer to part S2 of
the ESI.† Like in reported numerical applications of the original
BM method, in the revised method we employ a renormalized
concentration fluctuation expansion truncated to second order
so that two-body static correlation functions are needed as the
only static input. Different from the original BM method in
which S(q) constitutes this input, the RDF g(r) is required as a
direct input in the revised method.

A detailed discussion of the revised BM method for short-
time rotational and translational self-diffusion with focus on
the physical picture underlying the employed renormalized
fluctuation expansion is given in part S1 of the ESI.†

6 Pairwise additivity approximation

The rotational hydrodynamic mobility tensor lrr
ii (R1. . .RN) of N

spherical particles in an infinite, quiescent fluid linearly relates the
hydrodynamic torque Ti acting on a particle i to its rotational velocity
Xi. By disregarding three-body and higher order hydrodynamic
cluster contributions, one can approximate the exact N-particle
rotational hydrodynamic mobility tensor by a sum of two-particle
contributions,

lrr
ii R1 . . .RNð Þ � mr0 1þ

XN
n¼1;nai

orr
11 Ri � Rnð Þ

" #
; (17)

where mr
0 = Dr

0/kBT is the single-sphere rotational mobility coefficient
and 1 the three-dimensional unit tensor. The two-sphere tensor
orr

11(Ri � Rn) describes the hydrodynamic self-interaction of
sphere i by means of flow reflections at a second sphere labeled
by n, in the absence of the N � 2 other particles. This
constitutes the pairwise additivity (PA) approximation where
it is assumed that the HIs between two spheres are not
disturbed by other ones. In principle, this assumption is
justified for semi-dilute systems only.

Upon exploiting the axial symmetry of the two-sphere pro-
blem, the two-sphere tensor can be split into longitudinal and
transversal components,

orr
11(Ri � Rn) = arr

11(Rin)R̂inR̂in + brr
11(Rin)[1 � R̂inR̂in], (18)

with R̂in = (Ri � Rn)/Rin and Rin = |Ri � Rn|.
In terms of the scalar longitudinal and transversal func-

tions arr
11(R) and brr

11(R), the normalized short-time rotational

Fig. 6 HSY-RY g(r) for f = 0.05 and l = 3. Employed values of T̃ are
T̃ = 10, 20, 50, 100 as indicated.
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self-diffusion coefficient is expressed in PA approximation
by3,39,40

Dr

Dr
0

¼ 1þ 8f
ð1
1

dxx2gðxÞ arr11ðxÞ þ 2brr11ðxÞ

 �

; (19)

where x = r/s is here the two-sphere center-to-center distance in
units of the sphere diameter s = 2a. The functions arr

11(r) and
brr

11(r) can be calculated recursively in the form of a power series
in the reduced inverse pair distance a/r. For the no-slip hydro-
dynamic surface boundary condition employed in this work,
the leading-order (far-field) contributions are

arr11ðrÞ ¼ �3
a

r

� 8
þ O a

r

� 10� �
; (20)

brr11ðrÞ ¼ �
15

4

a

r

� 6
�39

4

a

r

� 8
þ O a

r

� 10� �
; (21)

with higher-order terms in the expansion given in ref. 45 and
86. At near-contact distance r E 2a where lubrication comes
into play, the expansions in eqn (20) and (21) converge only
slowly. In our numerical implementation of the PA method, we
therefore use high-order series expansion results obtained by
Jeffrey and Onishi.87 On using the zero concentration hard-sphere
RDF, g(x) = Y(x � 1), in eqn (19), where Y(x) is the unit step
function, we have numerically checked that our code precisely
reproduces the first-order virial coefficient value �0.631 in eqn (1).
This demonstrates the high accuracy of the employed tabulated
values for arr

11(r) and brr
11(r) also at near-contact distances.

To our knowledge, the present PA method of calculating Dr

is the first one where two-sphere hydrodynamic interactions
have been fully accounted for general HSY systems, and not
only for the limiting case of uncharged hard spheres. In earlier
PA calculations of Dr for HSY systems with masked excluded
volume interactions, only approximate far-field hydrodynamic
mobility tensor expressions have been used. The PA method
can be straightforwardly implemented. As it is noticed from
eqn (19), a one-dimensional numerical integration is required
only, with g(r) as the static input.

7 Results and discussion

Our simulation and theoretical results for Dr/Dr
0 as a function of

inverse reduced Yukawa interaction parameter T̃ are depicted
in Fig. 7–10, for volume fractions f = 0.05–0.35. In each figure,
the results for the vertical fluid-phase pathway at l = 3 directed
towards the fluid-bcc phase coexistence line are compared with
the results for the pathway at l = 8 directed towards the fluid-
fcc coexistence line (cf. Fig. 1). Note the different ordinate scales
in the four figures, selected to highlight the differences in the
theoretical and simulation results for Dr.

We start with discussing our high-precision simulation
results for the considered HSY systems. The slowing influence
of the HIs on rotational self-diffusion increases when the
likelihood for small-distance particle pairs increases. According
to our discussion of the RDFs in Fig. 3, the particles for l = 8
repel each other more strongly than those for l = 3, so that the

radial region where g(r) is small is more extended in the former
case. This explains why all curves of Dr for l = 8 are located above
those for l = 3, for all considered volume fractions. The HSY

Fig. 7 Normalized rotational self-diffusion coefficient, Dr/Dr
0, as a function of

T̃, for l = 3 and 8, and f = 0.05. Simulation data (plus symbols and crosses) are
compared with revised BM method predictions (solid and short-dashed curves)
and PA method predictions (dashed-dotted and long-dashed curves). The
theory and simulation values of Dr for l = 8 are in general larger than the
respective ones for l = 3. Horizontal solid segment at large T̃: hard-sphere
value according to eqn (1). Horizontal solid line segment at small T̃: scaling
prediction in eqn (2) for low-salinity charge-stabilized systems.

Fig. 8 Same as in Fig. 7 but for f = 0.15.

Fig. 9 Same as in Fig. 7 but for f = 0.25.
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particles can approach each other more closely with increasing
T̃. This is reflected in curves for Dr which are monotonically
decreasing.

As discussed earlier, at large values of T̃ a plateau region of Dr

is reached where the particles behave essentially as neutral hard
spheres, independent of l. The simulation curves in Fig. 7–10
converge therefore for large T̃ towards the result in eqn (1) which
accurately describes the f-dependence of Dr for neutral hard
spheres up to the freezing transition volume fraction. With
increasing f, the hard-sphere plateau region is reached for
smaller values of T̃. In the opposite limit of low T̃ values, the
interaction of the HSY particles is dominated by the Yukawa
potential part. For smaller volume fractions where g(s+) E 0 is
observed, eqn (2) derived originally for low-salinity charge-
stabilized particles is expected to be a decent description of Dr

in the small-T̃ region. It is noticed that the simulation curves for
l = 3 and 8, and f = 0.05 and 0.15, are indeed converging, with
decreasing T̃, towards the result in eqn (2). Differences are visible
for f = 0.25 and 0.35 where eqn (2) provides only an upper bound
for Dr.

We proceed with the discussion of the PA method results for
Dr with full inclusion of two-sphere hydrodynamic interactions
including the lubrication contribution for near-contact dis-
tances. The simulation curves for both values of l are well
reproduced by the PA approximation for f = 0.05 and 0.15. This
is an expected feature of this method which becomes exact
at low concentrations. At higher concentrations, three-body
and higher-order HIs contributions come into play which are
disregarded in the simple PA treatment. As a consequence, the
simulation curves for f = 0.25 and 0.35 are underestimated at
all values of T̃, i.e. the slowing influence of the HIs on
rotational self-diffusion is overestimated. As was noticed earlier
in the context of translational self-diffusion,52 this can be
attributed to the fact that the PA approximation neglects the
shielding of the HIs between two particles by other particles in
their vicinity. While Dr at larger f is underestimated in the PA
approximation, the general trends such as the relative difference
between the curves for l = 3 and l = 8 at smaller values of the
reduced temperature and the practical merging of the two curves
for larger values of T̃ are still well predicted.

In fact, the PA method for Dr is a decent approximation up to
surprisingly large volume fractions. At f = 0.25, the relative
difference between the PA method and simulation data for Dr

depicted in Fig. 9 is less than 5% only. At the largest considered
volume fraction f = 0.35, the simulated Dr is underestimated by
about 15% which is actually not so severe from the viewpoint of the
experimental accuracy. The overall quite decent performance of the
PA method with regard to short-time rotational self-diffusion
should be contrasted with its performance for collective diffusion
properties such as the generalized sedimentation coefficient where
the concentration range of applicability is significantly narrower.9

We discuss next the results obtained using the revised
second-order BM method. It is noticed from Fig. 7–10 that it
systematically, and significantly, underestimates Dr, for all
values of T̃ and all considered volume fractions. The relative
error, |Dr

BM� Dr
sim|/Dr

sim, increases systematically with increasing
f, and it is more pronounced at the lower-T̃ side where the
Yukawa repulsion is strong. In the hard-sphere-like interaction
regime of large T̃ values, the relative error increases from about
1% at f = 0.05 to 23% at f = 0.35. In comparison, the relative
error in the small T̃ region is larger, increasing from about 2% at
f = 0.05 to 32% at f = 0.35. The most significant feature of the
(revised and non-revised) BM method at higher concentrations is
its weak sensitivity to changes in the range and strength of the
pair potential, and to the accompanying changes in the RDF. For
example, in Fig. 10 with f = 0.35, the relative difference between
the curves for l = 3 and l = 8 is four times larger for the
simulation data than for the BM method curves. Incidentally, a
similarly weak dependence on the shape of the pair potential
and RDF has been found for the non-revised BM method result
for the high-frequency viscosity of charge-stabilized suspensions.9

In light of the controlled way in which approximations have
been introduced into the revised BM method, and considering
the accurate treatment of the hydrodynamic interactions,
our conclusions are that the severe underestimation of Dr is
basically due to the invoked mean-field type approximation of
particle correlations, and to the second-order truncation in the
renormalized concentration fluctuation expansion, with the
latter described in part A of the ESI.†

The revised BM scheme for Dr performs somewhat better for
neutral hard spheres. A direct comparison with simulation
results for hard spheres (where l = N or T̃ = N) is made in
Fig. 11. The simulation data are well described by eqn (1) in the
full liquid-phase concentration range. While the revised BM
method for Dr significantly improves the original second-order
BM method results for hard spheres by Treloar and Masters in
the range f r 0.4, there is no improvement at larger volume
fractions. A general observation made for the HSY systems is
that the relative mean difference between revised and non-
revised second-order BM results for Dr is typically 5–7% or less.

The low sensitivity of the BM method on the shape of the
RDF can be related to its mean-field type structure. An impor-
tant ingredient of the BM method is the effective propagator
GhMRi whose definition is given in part S1 of the ESI.† This
propagator depends on f but not on the RDF or higher-order
static correlation functions. The suspension microstructure for

Fig. 10 Same as in Fig. 7 but for f = 0.35.
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a given volume fraction enters into the BM approach only
through renormalized concentration fluctuations included up
to the second order. The truncation of the renormalized
fluctuation expansion at a higher order than the second one
could arguably enlarge the sensitivity of the method on the
equilibrium suspension microstructure, for the price that tri-
plet or even higher-order static distribution functions are then
required as an additional input. The calculation of sufficiently
precise static triplet correlation functions of concentrated
suspensions is usually quite cumbersome, except in the limit-
ing case of hard-sphere-like systems.88

Fig. 11 includes also the PA approximation prediction for
hard spheres. The simulation data are well described by this
method for f t 0.25, but Dr is increasingly underestimated at
larger f. This information gained from the comparison with
the simulation data can be profitably used for a straightforward
overall improvement of the PA method at larger concentrations
for arbitrary fluid-phase HSY systems. Motivated by the large-T̃
plateau forms of the simulation and PA method curves in
Fig. 7–10, this ad hoc improvement consists, for a given f, of
simply adding to the PA method prediction for Dr(T̃, l, f) the
plateau values difference, DDr = Dr � Dr

PA, between the hard-
sphere coefficient Dr(f) accurately described by the quadratic
form in eqn (1) and the corresponding PA prediction, Dr

PA(f),
for hard spheres. For the latter, a simple fourth-order poly-
nomial representation of the PA curve in Fig. 11 can be used.
This leads to the polynomial fitting expression

DDr = 0.361f2 + 0.310f3 + 2.264f4, (22)

for DDr valid for f r 0.494. We have used here that the correct
first-order in concentration results for the hard-sphere Dr(f) is
reproduced by the PA method. Note that the ad hoc improved
PA method based on eqn (22) overestimates Dr to some extent
for small T̃ values and larger concentrations. However, this
overestimation is in general less pronounced than the original

underestimation of Dr at all values of T̃ by the non-modified PA
method (cf. Fig. 10).

8 Summary and conclusions

We have presented a comprehensive joint theory-simulation
study of short-time rotational self-diffusion in fluid-like struc-
tured suspensions of charged colloidal particles, with the direct
particle interactions described by the HSY pair potential. Since
this effective pair potential is generic to many different soft
matter systems including ionic microgels and globular protein
solutions, the presented results and discussion should be of
broad interest. For the first time, a vast survey of the behavior of
Dr has been made within the generic HSY model. We have
quantitatively assessed the interaction parameter regions
where the limiting behavior of the neutral hard-sphere and
low-salinity charge-stabilized systems is reached, respectively.
While these two limiting regimes have been addressed in
greater detail in the past both experimentally and theoretically,
very little was known about the broad transition regime of
systems with intermediate salinity. This state of affairs has
changed with the present paper.

A large body of high-precision simulation data for Dr was
generated and compared with the results obtained using two
theoretical methods. The first and more elaborate one of these
theoretical methods is a revised second-order version of the
original Beenakker–Mazur method which was adapted to rota-
tional diffusion by Treloar and Masters38 and applied by the
latter two authors to no-slip hard-sphere systems. In our revised
second-order BM method, various approximation steps made in
the original method have been avoided, in particular regarding
the treatment of the HIs which in the original BM method is
rather approximate. The second semi-analytical method discussed
in this work is the PA approximation with full account of two-body
HI contributions including lubrication terms, but with three-body
and higher-order HI contributions disregarded.

General features of Dr observed in our simulation study are
its monotonic decrease with increasing T̃, reproduced qualita-
tively by both theoretical methods, and its strong sensitivity on
the Yukawa potential range parameter l for intermediate values
of T̃. This sensitivity is well captured by the PA method,
different from the revised BM method which captures this
sensitivity at low concentrations only. A lower bound of Dr is
provided by eqn (1) for hard spheres, reached by the simulation
curves of Dr at large values of T̃. An upper bound is given by the
scaling result in eqn (2). This upper bound is approached by the
simulation curves at low values of T̃, provided f is sufficiently
small (i.e., f t 0.15) and l not very large (i.e., l t 8).

Even though HIs are accounted for to significantly higher
accuracy than in the original BM and Treloar and Masters approach,
the resulting improvement of Dr in our revised second-order BM
method is comparatively small, amounting roughly to 5–7% for
f t 0.4. A similar observation regarding the improvement by
the revised BM method has been made regarding the hydro-
dynamic function, the short-time translational self-diffusion

Fig. 11 Normalized rotational self-diffusion coefficient Dr/Dr
0 of neutral

no-slip hard spheres as a function of f. Simulation results by Abade et al.33

and Banchio et al.26 are compared to the second-order virial expansion
result in eqn (1) by Cichocki et al.,37 the original BM (dg) method result by
Treloar and Masters,38 and our revised second-order BM (revised dg) and
PA methods predictions.
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coefficient, and the high-frequency viscosity of hard spheres.30

This may be due to the interplay between mean-field and HIs
approximations going into the BM method which can cause
uncontrolled fortuitous cancellations or fortifications of errors.

It should be noted that the (revised) second-order BM
method performs distinctly better for collective than self-
diffusion properties, notably for the wavenumber dependent
distinct part of the hydrodynamic function and the collective
diffusion coefficient.9 In particular concerning the distinct
hydrodynamic function part, the BM method performs quite
well both for hard spheres and charge-stabilized particles. In
future work, it will be interesting to find out whether the overall
good agreement with simulation data for the collective diffusion
properties of HSY systems can be further improved by the
revised method. The performance of the revised BM method
regarding Dr can be possibly improved by the inclusion of third-
order renormalized fluctuation contributions where, however,
static three-body distribution functions are required as input to
the extended method in addition to g(r).

The PA method with its full account of two-body HIs con-
tributions describes the HSY simulation data for Dr quite well
for volume fractions f t 0.25. In fact, this is a rather broad
concentration range considering the conceptual simplicity of
this easy-to-implement method, and the fact that for HSY
systems with non-small electrostatic screening lengths the
freezing transition volume fraction is substantially smaller than
that of neutral hard spheres. At larger concentrations, the
rotational self-diffusion coefficient is significantly underesti-
mated owing to the disregarded hydrodynamic shielding effect
embodied in the neglected three-body and higher-order hydro-
dynamic mobility matrix contributions. Yet, general trends
such as the relative difference between the Dr curves for l = 3
and l = 8 at smaller values of T̃, and the essential merging of
the two curves for values T̃ \ 30 seen in the simulations are
well reproduced also at larger concentrations by the PA
method. We have discussed an ad hoc improvement of the PA
method suggested by our simulation results which is operative for
larger concentrations. This improvement simply amounts to adding
the polynomial expression for the hard-sphere value difference
DDr(f) in eqn (22) to the PA method prediction for Dr.

On going systematically beyond the PA approximation, three-
body irreducible hydrodynamic cluster contributions to Dr could be
additionally included. For low-salinity systems at lower concentra-
tions, the leading-order far-distant three-body contributions have
been accounted for already in ref. 39 in conjunction with Kirkwood’s
superposition approximation for the static three-body distribution
function input. The long-distance three-body cluster contribution to
Dr is positive valued, with the effect of bringing the value for Dr closer
to the simulation data.22,39 For larger concentrations, the calculation
of sufficiently precise static triplet correlation functions is
required which complicates the calculation of Dr considerably.
Whether the addition of the full three-body hydrodynamic
cluster contributions to the PA calculated Dr will largely and
systematically improve the agreement with the simulation
results for concentrated HSY systems is an open question
which remains to be answered in future work.

Since the paper describes a generic study of rotational self-
diffusion in fluid-phase HSY systems, we have refrained from
including a comparison with specific experimental results.
However, we can reasonably expect good agreement between
experimental data and our high-precision simulation data for Dr,
modulo unavoidable experimental scatter, for all suspensions
whose static structure factor is well described using the HSY model.
The microscopic details of the experimental effective pair potential,
notably particle charge renormalization and specific chemical
surface-charge regulation features, should play no significant role
here as long as the experimental S(q) is well fitted in its q-range by a
HSY-based structure factor calculated using the Rogers–Young
scheme. For a quick and decent estimate of Dr simply based on
the experimentally determined S(q), the ad hoc improved PA
method in conjunction with the Rogers–Young fit of S(q) should
prove quite useful in the future.

Finally, we note that both the revised PM method and the PA
approach can be rather straightforwardly extended to colloidal
particles with an internal hydrodynamic structure, and hydro-
dynamic surface boundary conditions different from the no-slip
one employed in the present work. This offers the possibility to
study theoretically, e.g., the rotational self-diffusion of weakly
crosslinked ionic and non-ionic microgels, and of core–shell
particles with a fluid-permeable soft shell.
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40 M. Watzlawek and G. Nägele, Physica A, 1997, 235, 56–74.
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48 P. Holmqvist and G. Nägele, Phys. Rev. Lett., 2010, 104, 58301.
49 M. Heinen, F. Zanini, F. Roosen-Runge, D. Fedunová,
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50 A. Ivlev, H. Löwen, G. Morfill and C. P. Royall, Complex
Plasmas and Colloidal Dispersions: Particle-Resolved Studies
of Classical Liquids and Solids, Series in Soft Condensed
Matter, World Scientific, 2012, vol. 5.

51 A. P. Philipse and A. Vrij, J. Chem. Phys., 1988, 88, 6459–6470.
52 M. Heinen, P. Holmqvist, A. Banchio and G. Nagele, J. Appl.

Crystallogr., 2010, 43, 970–980.
53 M. Heinen, P. Holmqvist, A. J. Banchio and G. Nägele,
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J. Chem. Phys., 2011, 134, 129901.
55 K. van Gruijthuijsen, M. Obiols-Rabasa, M. Heinen,
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R. Pecora and G. Nägele, J. Chem. Phys., 2005, 123, 054708.

80 J. Gapinski, A. Patkowski, A. Banchio, J. Buitenhuis,
P. Holmqvist, M. Lettinga, G. Meier and G. Nägele,
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