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We study Friedel oscillations and screening effects of the impurity potential in the Hubbard model. Electronic
correlations are accounted for by solving the real-space dynamical mean-field theory equations using the
continuous-time quantum Monte Carlo simulations at finite temperatures and using a homogeneous self-energy
approximation with the numerical renormalization group at zero temperature. We find that in the Fermi-liquid
phase both the amplitudes of Friedel oscillations and the screening charge decrease with increasing the
interaction and follow the behavior of the Fermi-liquid renormalization factor. Inside the Mott insulator regime,
the Friedel oscillations are absent but the residual screening charge remains finite.
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I. INTRODUCTION

The Friedel oscillation (FO) is a quantum mechanical
phenomenon observed in metals in presence of an inhomo-
geneous, space-dependent potential [1–4]. FOs are seen in
such physical properties as a charge density or a local density
of states at a given energy. For example, if either an ion
or a defect is inserted into a metal, breaking a translational
invariance, then the electrons with energies near the Fermi
surface are scattered yielding spatial oscillations in the charge
density surrounding the inhomogeneity. This effect survives
even at finite temperatures T as long as T/TF � 1, where
TF is the Fermi temperature. FOs can be viewed as a quan-
tum analog of classical screening of a charged impurity in
a plasma. However, in the classical case the change in the
charge density decays exponentially with a distance from
the impurity and without oscillations. In the quantum regime
the decay is polynomial with a rippling pattern formed by
alternating regions of higher and lower electronic densities.
The charge density n̄(r) very far from the impurity in a
noninteracting, continuous system is given by

n̄(r) = n̄hom + A
cos(2kF r + δ)

rd
, (1)

where n̄hom is the uniform density, A is the amplitude of the
FO, δ is a phase shift, and d is the dimension of the system
[1–4]. The formula (1) is valid in the asymptotic limit with
kF r � 1, where kF is the Fermi momentum and r is a distance
from the impurity.

FOs were predicted by Friedel in a series of papers [1,2]
and then became an essential component in the study of
metallic alloys; for reviews see [5–8]. The first direct ob-
servations of FOs [9–12] were possible after invention of
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the scanning tunneling microscopy (STM) [13]. In fact, sig-
natures of FOs were experimentally seen in various met-
als and semiconductors, for example, on surfaces Cu(111),
GaAs(111), or Si(111)Ag [9,14,15]. In recent years obser-
vation of FOs reveals interesting features in solids, such as
direction-dependent giant charge oscillations on ferromag-
netic Fe film grown on W(001) surface [16] or an interaction-
induced band with a well-defined dispersion existing in ad-
dition to conventional surface-state bands at noble metal sur-
faces [17]. STM studies have further shown that FOs induce
asymmetry in the electron transport at the monolayer-bilayer
interfaces in epitaxial graphene on SiC (001) which may find
future application in quantum switching [18].

After the initial prediction [1,2], further theoretical inves-
tigations were performed to understand FOs in crystals with
nonspherical Fermi surfaces [19–26], in model systems with
an impurity on which the electrons can interact [27–31], in
one-dimensional quantum wires where interacting electrons
form a Luttinger liquid [32–38], in two- or three-dimensional
Hubbard models with electrons forming either the Fermi
liquid or the Mott insulator [39–44], or in system with in-
teracting and disordered electrons such as amorphous alloys
and quasicrystals [45]. Recent theoretical progress was made
in understanding spin-dependent FOs [46], as well as under-
standing FOs in topological insulators [47,48], in graphane
[49–51], in cold atoms [52], in systems with charge density
waves [53], or with presence of the transport currents [54].
It was also noted that FOs can be used as a probing tool
of quasiparticles [55]. Additionally, FOs lead to an effective
interaction between localized magnetic moments which is me-
diated by conducting electrons and is known as the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction [56–59]. A related
issue to the FOs is the Friedel sum rule which holds for both
noninteracting [1,2,22,25] as well as for interacting electrons
[60–63].
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Different studies of FOs in Fermi liquids revealed that the
oscillations are renormalized due to the electronic interac-
tions. Although the charge FOs in the Hubbard model and
the spin liquid at the Mott transition were studied [39–44], a
comprehensive quantitative analysis of the FOs at the Mott
transition is still an open problem. In particular, we would
like to address quantitatively the following questions: How
does the oscillation amplitude A change with the interaction
strength? How does it behave at the Mott transition? What is a
relation between the Fermi-liquid renormalization factor and
the amplitude A? These problems are particularly interesting
in the context of transition metal oxides. It motivated us to
study the FOs in a model system of interacting lattice fermions
within the real-space dynamical mean-field theory (R-DMFT)
[40,64–69].

The R-DMFT is a reliable, self-consistent, and comprehen-
sive approximation for interacting lattice fermions describing
both the Fermi liquid as well the Mott insulator [70,71]. In
this paper we show the disappearance of the FO at the Mott
transition for the finite lattice systems.

The paper is organized as follows: In Sec. II we describe
our model. In Sec. III we introduce R-DMFT formalism,
discuss methods to solve it in different temperature regimes,
and define interesting physical quantities. In Secs. IV and
V we present numerical results for FOs as well as discuss
and explain physical properties of the system. In Sec. VI
we present conclusions and an outlook for possible future
investigation including a discussion on observing signatures
of FOs in real materials with correlated electrons and raise
the question if FOs would influence the charge transport
properties in such materials.

II. MODEL

We study FOs within a one-band Hubbard model in pres-
ence of an external impurity potential and given by the
Hamiltonian

H =
∑
i jσ

ti j â†
iσ â jσ +

∑
iσ

Viσ â†
iσ âiσ + U

∑
i

n̂i↓n̂i↑, (2)

where âiσ (â†
iσ ) is the annihilation (creation) fermionic opera-

tor with spin σ on the ith lattice site, ti j is the hopping matrix
element between the ith and jth sites with tii = 0. The second
term describes the external (inhomogeneous) potential energy
Viσ . The third term models the interaction energy when two
fermions with opposite spins are located on the same lattice
site.

In this paper we consider a local impurity potential Vi =
V0 δi,i0 , where i0 represents the lattice site �Ri0 . We study
finite lattice systems on a two-dimensional (2D) square lattice
and on a three-dimensional (3D) cubic lattice. We consider
paramagnetic systems without any long-range order and apply
a periodic boundary condition. The Hamiltonian (2) is solved
within R-DMFT approximation [40,65–69].

III. R-DMFT FORMALISM AND PHYSICAL QUANTITIES

A. Matsubara Green’s functions

All physical properties, which are studied here, are
obtained from one-particle Green’s functions defined

by

Gi jσ (τ ) = −〈Tτ âiσ (τ )â†
jσ (0)〉, (3)

where τ ∈ (0, β ) is the imaginary time and β = 1/T denotes
the inverse temperature with the Boltzmann constant equal to
unity [72]. The symbol Tτ means the chronological operator
and 〈. . .〉 represents both quantum and thermal averages in the
grand-canonical ensemble with a fixed chemical potential μ.
Later we also perform Fourier transformation to obtain the
Green’s functions Gi jσ (iωn), where ωn = (2n + 1)π/β are
fermionic Matsubara frequencies with integer n.

B. R-DMFT

The Green’s functions (3) in Matsubara frequency space
obey an exact Dyson equation

Gi jσ (iωn) = G(0)
i jσ (iωn) +

∑
kl

G(0)
ikσ

(iωn)�klσ Gl jσ (iωn), (4)

where G(0)
i jσ (iωn) are the Green’s functions at U = 0. The

self-energies �klσ (iωn) account for all interaction effects. The
main approximation of R-DMFT [70] is that the self-energies
are local, which means that they are diagonal in the lattice site
indices, i.e.,

�i jσ (iωn) = �iσ (iωn)δi j, (5)

where δi j is the Kronecker delta. Nevertheless, they are site
dependent for inhomogeneous systems [40,65–69].

R-DMFT approximation consists of the following set of
self-consistent equations: At each lattice site l the reduced
partition function, obtained within the cavity method [71], is
given by

Zl =
∫

D[alσ , a∗
lσ ]e−Sl [alσ ,a∗

lσ ], (6)

where the local action Sl is

Sl = −
∫ β

0
dτ1

∫ β

0
dτ2

∑
σ

a∗
lσ (τ1)G−1

lσ (τ1 − τ2)alσ (τ2)

+U
∫ β

0
dτ a∗

l↑(τ )al↑(τ )a∗
l↓(τ )al↓(τ ). (7)

In Eq. (7) the path-integral formalism in the coherent state
representation is used with a∗

lσ and alσ as Grassmann variables
[72]. In Eq. (7) the kernel

G−1
lσ (τ1 − τ2)≡−

(
∂

∂τ1
−μ + Vl

)
δ(τ1 − τ2) − 
lσ (τ1 − τ2)

(8)
is the inverse of the mean-field propagator and


lσ (τ1 − τ2) ≡ −
∑

i j

tliG
l
i jσ (τ1 − τ2)t jl (9)

is the hybridization function, which physically accounts for
the coupling of the lth site with the rest of the lattice. Gl

i jσ (τ )
is the Green’s function on a lattice with a cavity on site l . The
symbol δ(τ ) represents the Dirac function. The mean-field
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propagators Glσ (iωn) are related to the diagonal matrix ele-
ments [Gσ (iωn)]ll of the one-particle matrix Green’s function
by the local Dyson equation

G−1
lσ (iωn) = [�σ (iωn)]ll + 1

[Gσ (iωn)]ll
. (10)

We use notation where the matrices are given by
[Gσ (iωn)]i j = Gi jσ (iωn) and [�σ (iωn)]i j = �i jσ (iωn),
respectively. The lattice Green’s functions are obtained
by inverting the real-space Dyson equations (4), which in a
matrix form read as

Gσ (iωn) = [ξ (iωn) − t − �σ (iωn)]−1, (11)

where [ξ (iωn)]i j = (iωn + μ − Vi )δi j . The hopping matrix is
given by [t]i j = ti j and the matrix self-energy is obtained
within the local approximation (5). Finally, the functional
integrals determining the diagonal matrix elements of the
Green’s functions are given by

[Gσ (iωn)]ll = − 1

Zl

∫ ∏
σ

D[a∗
lσ , alσ ][alσ (iωn)a∗

lσ (iωn)]

× e−Sl [a∗
lσ ,alσ ]. (12)

The set of Eqs. (4)–(12) constitutes R-DMFT and those equa-
tions are solved numerically in an iterative way.

C. R-DMFT within CT-QMC

Among different R-DMFT self-consistency equations (4)–
(12) the most difficult is to solve the problem in Eq. (12).
Here, we solve it by using continuous-time quantum Monte
Carlo (CT-QMC) simulations, where the partition function is
expanded about the hybridization function and resummed by
using a stochastic Metropolis algorithm [73]. The computer
program developed by us is based on the approach of Haule
[74]. In this method the problem is solved in the Matsubara
frequency space. CT-QMC only works for finite temperatures
and the computational timescales at least linearly with β. In
this method the problem (12) is solved on every nonequiv-
alent lattice site. These factors made that the solution of
R-DMFT within CT-QMC very time consuming, in particular,
at low temperatures and for large lattice systems in higher
dimensions (e.g., 3D), exactly where DMFT approximation
is supposed to be more accurate.

D. R-DMFT within homogeneous self-energy approximation

Due to these limitations of CT-QMC we also use an
approximate method to solve R-DMFT equations, which is
described now. The self-energy �iσ (iωn) in Eq. (4) can be
split into a homogeneous and an inhomogeneous part as
follows:

�iσ (iωn) = �σ (iωn) + 
�iσ (iωn). (13)

The first term accounts for the interaction effects in a ho-
mogeneous system and it is therefore site independent. We
want to describe FOs very far from the impurity, i.e., at sites
�Ri such that | �Ri − �Ri0 | � a, where a is a lattice constant,
and make a contact with the original formula (1). Therefore,
since far away from the impurity the effect of Viσ on the
self-energy is expected to be weak, the inhomogeneous part


�iσ (iωn) can be neglected. The homogeneous part �σ (ω) =
�σ (iωn −→ ω + i0+) is determined by solving the dynamical
mean-field theory (DMFT) self-consistency equations for in-
finite homogeneous system [71] at zero temperature by using
the numerical renormalization group (NRG) method [75]. The
open-source code NRG LJUBLJANA is used for that purpose
[76]. The computed self-energy is then transferred into the
real-space Dyson equation (11) containing the impurity poten-
tial Vi in order to obtain the Green’s function. This approach
to solving R-DMFT is called the homogeneous self-energy
approximation (HSEA). Within HSEA we could perform a
complete analysis of the 2D systems and some preliminary
studies of 3D systems.

We note that HSEA is not equivalent to the commonly
used local density approximation (LDA), e.g., [68], and
only the former gives rise to FOs. The LDA, also known
as a Thomas-Fermi or WKB approximation, corresponds
to the replacement of k-integrated Dyson equation in
the homogeneous DMFT [71] by Giiσ (ω) = ∑

�k 1/[ω −
ε�k − Vi − �(ω)], where ε�k is a noninteracting dispersion
relation in momentum �k space. Within HSEA the real-space
Dyson equation (4), after Fourier transformation, takes the
form Giiσ (ω) = ∑

�k�k′ ei �Ri (�k−�k′ )G�k�k′ (ω), where G�k�k′ (ω) =
[G0(ω)−1 − �(ω)1]−1

�k�k′ , with [1]�k�k′ = δ�k�k′ , [G0(ω)−1]�k�k′ =
(ω − ε�k )δ�k�k′ − V�k�k′ , and V�k�k′ being a Fourier transform of the
potential Vi. The presence of oscillatory terms with �k �= �k′
yields FOs.

E. Physical quantities

The most desired physical quantity in studying the FOs
is the average number of particles on each lattice site n̄iσ ≡
〈â†

iσ âiσ 〉, i.e., the spin-resolved particle density. In case of
R-DMFT solved within CT-QMC the spin-resolved density of
particles, given by

n̄iσ = lim
τ→0−

Giiσ (τ ), (14)

is directly determined from the Monte Carlo simulations.
Since this method is based on stochastic sampling, the statis-
tical error given by the standard deviation of different samples
is also estimated here.

In case of HSEA we determine the retarded one-particle
Green’s function [72] and then we find the local spectral
function

Aiσ (ω) = − 1

π
Im Giiσ (ω). (15)

Having Aiσ (ω) we compute the spin-resolved particle density
at finite temperatures according to

n̄iσ =
∫ +∞

−∞
Aiσ (ω) f (ω) dω, (16)

where f (ω) is the Fermi-Dirac distribution function.
The total number of particles per site is given by

n̄ = 1

NL

NL∑
i=1

n̄i, (17)
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where n̄i = n̄i↑ + n̄i↓ and NL is the number of the lattice sites.
Since in this paper we consider spin-rotationally invariant
systems, the equality n̄i↑ = n̄i↓ holds.

The screening effect, i.e., a shielding of the impurity po-
tential by the conducting electrons [3], is quantified by the
so-called screening charge according to

Z =
∑

i

(n̄i − n̄hom ), (18)

where the summation runs over all lattice sites and n̄hom

corresponds to the particle density of the corresponding ho-
mogeneous system with Vi = 0.

IV. NUMERICAL RESULTS FOR R-DMFT WITHIN
CT-QMC

In this section we present numerical results obtained within
CT-QMC solver for R-DMFT equations. In the following,
we choose the chemical potential μ = U/2 so that the ho-
mogeneous system is at half-filling with the density n̄ = 1.
We consider finite lattice systems. In all cases the hopping
amplitude ti j = t is only between nearest neighbors. We set
t = 1 to define the energy unit and the lattice constant a = 1 to
define the length unit. The bandwidth W is given by W = 2zt ,
where z is the coordination number. The system is subjected
to periodic boundary conditions with a finite number NL of the
lattice sites.

A. Two-dimensional square lattice

We first present our results for a two-dimensional square
lattice for a system size of 31 × 31. In case of R-DMFT
within CT-QMC we perform simulations for finite tempera-
tures corresponding to β = 5/t and 15/t . These temperatures
are within the crossover regime of the U -T phase diagram,
above the critical temperature for the square lattice [77]. In
Figs. 1 and 2 the FOs are shown for the above-mentioned
lattice with the impurity V0 = 6t placed in the center at �R0 =
(16a, 16a). In Fig. 1 we present results at β = 5/t and in
Fig. 2 at β = 15/t for U = t, 5t, 8t in each case. It is clearly
seen that with increasing the interaction the FO amplitudes
diminish and almost no oscillation is seen for U = 8t for
both temperatures. We note that the linearized DMFT pre-
dicts Uc = 6

√
zt ≈ 12t at T = 0 and z = 2d = 4 [78]. At

finite T,Uc is smaller and U = 8t may already mark an
approximate Mott transition point. Hence, we report the dis-
appearance of FOs on approaching the Mott transition in this
case. We further note that FOs are stronger, i.e., more visible,
at lower temperatures (cf. Figs. 1 and 2). FO decays as 1/r2

in two dimensions.
The stochastic nature of the CT-QMC and resulting numer-

ical inaccuracy make it impossible to provide more detailed
analysis of the FOs decays. Improving the numerical accuracy
of our simulations, in particular, to get results for the FOs
in three-dimensional systems is beyond our current CT-QMC
implementation (see Appendix B for technical details). There-
fore, in the next section we revert to the Hubbard model on a
one-dimensional (1D) lattice to gain more insights about the
decay of the FOs and the behavior of the screening charge at
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FIG. 1. Friedel oscillations in particle densities of the Hubbard
model in two-dimensional square lattice with 31 × 31 sites. The
impurity potential V0 = 6t is located in the center at R0 = (16a, 16a)
and the temperature is set to β = 5/t . Densities variations n̄i − n̄hom

are plotted along the horizontal (x) axis for different sections in the
vertical (y) direction of the lattice. The distance between ticks on the
vertical axis is 0.02. The line with the impurity potential is excluded.
In the upper, middle, and lower panels the interaction is U = t, 5t ,
and 8t , respectively. Stochastic error bars are shown.
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FIG. 2. Friedel oscillations in particle densities of the Hubbard
model with the temperature β = 15/t in two-dimensional square
lattice. The other parameters and style of plotting are the same as
in Fig. 1.

finite interactions and nonzero temperatures from a toy model,
as explained below.

B. One-dimensional chain

According to the exact Bethe ansatz solution of the Hub-
bard model on 1D lattice with half-filling there is a Mott

insulating state for any finite interaction [79]. Moreover, away
from half-filling the Fermi-liquid picture breaks down and the
electrons are in a Luttinger-liquid state. On the other hand,
the DMFT provides an exact solution of the Hubbard model
in the infinite dimensions [70]. At finite dimensions, DMFT
approximates the self-energy by the momentum-independent
one and, therefore, reproduces features of the Fermi liquid
even in one dimension. We make use of this artifact of DMFT
to gain some insights about the FOs in higher-dimensional
systems from studying the behavior of the 1D Hubbard model.
We emphasize that we do not represent any real 1D system
(e.g., a quantum wire) using our “toy model” but just use
it as a computational trick to circumvent the limitations of
simulating higher-dimensional systems within R-DMFT+CT-
QMC.

We first study the “theoretical Mott transition” for a one-
dimensional homogeneous Hubbard model (“toy model”) at
finite temperature in order to estimate the critical temperature
and interactions for such systems. We use the method of
discontinuity in the double occupancy with the interactions
in order to obtain these estimates (see Appendix A, [80]).
According to our results, for β = 20/t the coexistence region
exits between the metallic and insulating phases with the two
transition points Uc1 = 6.6t,Uc2 = 7.2t . Similar to the case
of 2D, here the critical interaction is slightly less than the pre-
dicted value from the linearized DMFT (Uc = 6

√
zt ≈ 8.5t at

T = 0) due to the finite-temperature effects (see Appendix C,
[78]).

Here we consider a one-dimensional lattice chain with the
number of lattice sites NL = 50. We perform simulations for
finite temperatures corresponding to β = 5/t and 20/t .

In Fig. 3 we present the density n̄i on different lattice
sites with the impurity potential V0 = 2t set on | �Ri| = 5a site.
The upper panel shows FO at β = 5/t and the lower panel
shows FO at β = 20/t . Results are presented for different
interactions U marked by lines in different colors. In the
zoomed areas we show FO in the vicinity of the impurity site.
Away from the impurity site the relative changes in the densi-
ties are very small, much lower than 1%. The amplitudes of
FO are larger than the 2D due to a slower 1/r decay in
this case and hence easier to visualize. Similar to 2D, the
oscillations are more pronounced at lower temperatures and
damped with the increasing interactions. We note that the pe-
riod and the phase shift of the oscillations remain unchanged
and stay the same at different temperatures. With the help of
Eq. (1) it means that at half-filling the length of the Fermi
wave vector kF and the phase shift are invariant with respect
to the interaction change. However, this is not the case away
from the half-filling where the particle-hole symmetry breaks.
Although the Fermi volume, i.e., the length of kF in 1D, is
invariant according to the Luttinger theorem, the phase shift
of FO changes with the interaction.

In the case of 1D systems at half-filling we could perform
a more quantitative analysis to understand the decay of the
FO amplitudes with the increasing interaction. In Fig. 4 we
plot the local density deviations |n̄i − n̄hom| as a function of
the inverse of the relative distance from the impurity site,
i.e., 1/| �Ri − �Ri0 |. The asymptotic linear decay is visible in
agreement with Eq. (1) in the presence of interactions for both
the temperatures. In case of β = 5/t we see more random
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FIG. 3. Friedel oscillations in particle densities at different lattice
site in presence of the single impurity potential V0 = 2t placed at
| �Ri| = 5a in a 1D chain with NL = 50 sites. Upper (lower) panel
presents results for β = 5/t (β = 20/t). Different colors correspond
to different interactions U which are accounted for by using R-
DMFT within CT-QMC. Corresponding stochastic error bars are also
shown. The insets show FOs in the neighborhood of the impurity.

deviations in the maxima of the local density as compared to
β = 20/t . This is due to a smallness of the FO amplitudes
in the former case and stochastic nature of the CT-QMC
results. The points shown in Fig. 4 follow the approximate
linear rule |n̄i − n̄hom| = Ax + B, where x = 1/| �Ri − �Ri0 |. The
parameters A and B can be determined by fitting procedure.
Of particular interest is the slope parameter A = A(U ) which
describes changes in the FO amplitude with U . We perform
a linear fit for the case of β = 20/t and present it in Fig. 5.
We see that the slope A(U ) decreases with increasing U and
vanishes at U ≈ 7t which lies within our numerically obtained
value of the transition points Uc1 = 6.6t and Uc2 = 7.2t (cf.
Fig. 6). Thus, in this case we report the disappearance of FO
at the Mott transition (see Appendix B for details).

The screening charge Z , defined in Eq. (18), is shown in
Fig. 7. Since the impurity potential is repulsive V0 = 2t > 0
the particles are pushed away (Z < 0) from the system which
is treated within the grand canonical ensemble with a constant
chemical potential μ = U/2 as discussed at the beginning.
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FIG. 4. Variation of the density deviations as a function of in-
verse of the relative distance from the impurity site for the same
system and method as in Fig. 3. In the upper (lower) panel we show
results for β = 5/t (β = 20/t).
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20/t . The slope A(U ) decreases with increasing U and vanishes on
the insulating side.
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With increasing the interaction the screening of the impurity
is weaker, i.e., the number of removed charge is smaller, as is
seen in the upper panel of Fig. 7.

When the system turns into a Mott phase with a correlation
gap, the screening is ineffective and Z approaches zero as
shown in the upper panel of Fig. 7. We find rather weak
dependence of the screening charge on the temperature, which
is illustrated in the lower panel of Fig. 7. The insights provided
by studying our 1D “toy model” need further investigations
using higher-dimensional lattice systems with a large number
of lattice sites.

We could not achieve lower temperatures, higher dimen-
sions, and precise numerical accuracy in our calculations
using the R-DMFT+CT-QMC method (see Appendix B).
Therefore, we turn to HSEA approach for the further stud-
ies of FOs in the Hubbard model. Using this approach we
could perform simulations at T = 0 (strictly speaking at
β = 10 000/t), we could study higher-dimensional lattices,
i.e., 2D and 3D systems where DMFT is a more accurate
method. In Appendix C we explicitly compare HSEA with
the exact results of CT-QMC for the 1D toy model and show
a good qualitative agreement in the behavior of the FO’s
decay, screening charge with the interactions obtained from
the two methods. We could also compare the results of our
1D “toy model” with the higher-dimensional models finding
the expected similarities. We thus claim the HSEA to be a
reliable approximation also for the higher-dimensional sys-
tems. Particularly, our initial results on 3D systems are a good
starting point to gain knowledge about the behavior of the FOs
in real materials where effects of electronic correlations are
significant.

V. NUMERICAL RESULTS FOR R-DMFT WITHIN HSEA

In this section we present our numerical results obtained
within HSEA. We determine the DMFT self-energy for a
given U by using the NRG at zero temperature. This self-
energy is inserted into the Dyson equation (4) to obtain the
Green’s functions and other physical quantities, as discussed
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FIG. 7. Screening charge Z determined from Eq. (18) as a func-
tion of interaction U (upper panel) and temperature (lower panel).
The system parameters are the same as in Fig. 3.

in Sec. III. Since we start from using the NRG self-energies,
the Green’s functions are determined on the real-frequency
axis. As in the former section, the chemical potential is fixed
at μ = U/2 to keep the homogeneous systems at half-filling
with n̄ = 1. Within the HSEA we are able to work within
much larger lattices in higher dimensions as compared to the
previous case of CT-QMC. Hence, we consider a square lattice
and a cubic lattice here. In both cases, the hopping amplitude
ti j = t is only between nearest neighbors and t = 1 as earlier.

A. Two-dimensional square lattices

The FOs in the two-dimensional lattice with the HSEA are
presented in Figs. 8 and 9. The lattice size is 31 × 31 and
the impurity potential V0 = 24t is located in the center. The
main panels of Figs. 8 and 9 show two-dimensional color
maps of FOs seen in the particle density. In the insets the
FOs are shown along the vertical line crossing the impurity
site. The FOs are not spherically symmetric as in a free space
but possess the square-lattice symmetry. Due to constructive
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FIG. 8. Friedel oscillations in particle densities of the Hubbard model in two-dimensional square lattice with 31 × 31 sites. The impurity
potential V0 = 24t is located in the center at �R0 = (15a, 15a) and the interaction U = 0 (left panel) and 2t (right panel). The insets show FOs
along vertical line crossing the impurity site. The color scale is spanned in-between the highest and lowest values of density in the system. The
color scale changes for different U ’s since the minimal value of the density increases with U as shown in the insets.

interference of oscillatory waves along horizontal and vertical
directions the strongest FOs are observed along these lines.
The amplitudes of FOs are much smaller as compared to those
in one-dimensional cases because of the damping factor 1/r2.
It is also clearly seen that by increasing the interaction the
amplitudes of the oscillations are weaker and as the system
becomes an insulator the FOs far from the impurity are absent.
In insulator there are still visible deviations in the density of
particles in the neighborhood of the impurity site. We do not
show the densities on the impurity site but substituted them by
the second smallest value in the plots. Otherwise, the impurity
contribution would overshadow any oscillations in n̄i due to
their fast power-law decay with a distance.

In Fig. 10 we plot the local density deviations |n̄i − n̄hom| as
a function of the square of the inverse of the relative distance
from the impurity site, i.e., 1/| �Ri − �Ri0 |2 for the densities
shown in Figs. 8 and 9. Here, we show results along a line
parallel to the diagonal one and shifted by one lattice constant.
The 1/r2 decay in amplitude is visible in agreement with
Eq. (1) in the presence of interactions. The points shown in
Fig. 10 follow the approximate quadratic rule |n̄i − n̄hom| =

Ax2 + B, where x = 1/| �Ri − �Ri0 | and the parameters A and B
are determined by fitting procedure.

In particular, the slope parameter A = A(U ) describes
changes in the FO amplitude with U . We see that the slope
A(U ) decreases with increasing U and vanishes at the metal-
insulator transition (cf. Fig. 11) at Uc ≈ 12t . The critical value
Uc determined from the A(U ) curve is in perfect agreement
with the linearized DMFT [78]. The value is larger than that
obtained within CT-QMC because now the temperature is zero
(strictly speaking, β = 10 000/t).

Since a metallic system described with DMFT is within
the Fermi-liquid regime, we expect that it must be fully
quantified by the Fermi-liquid renormalization parameter and
by the lifetime of quasiparticles. Both quantities are obtained
by expanding the local self-energy at low frequencies, in the
following way:

�(ω,U ) ≈ α(U )ω + iγ (U )ω2, (19)

where parameters α(U ) = (∂ Re�(ω,U )/∂ω)|ω=0

and γ (U ) = (∂2Im�(ω,U )/∂ω2)|ω=0 are determined
numerically from the given NRG self-energy. In Fig. 11

FIG. 9. Friedel oscillations in particle densities of the Hubbard model in two-dimensional square lattice with 31 × 31 sites. The impurity
potential V0 = 24t is located in the center at �R0 = (15a, 15a) and the interaction U = 5t (left panel) and 12t (right panel). The insets show
FOs along vertical line crossing the impurity site and the color bars have the same legend as in Fig. 8.
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FIG. 10. Variation of the density deviations as a function of the
square of inverse of the relative distance from the impurity site for
the same system and method as in Figs. 8 and 9.

we plot both the Fermi-liquid renormalization factor
ZFL(U ) = 1/[1 − α(U )] and the prefactor γ (U ) in the
inverse of the quasiparticle lifetime for the Hubbard model
in two dimensions. The renormalization factor ZFL(U )
vanishes at the metal-insulator transition point Uc whereas
the coefficient γ (U ) diverges there. We find that the FO
amplitudes A(U ) follow the behavior of ZFL(U ). This
means that the renormalization of the quasiparticle wave
functions is the primary source for damping of the FOs
with increasing U . As expected, ZFL(U ) = 0 at Uc and FOs
disappear.

As shown in [3] for the noninteracting sys-
tems, the particle density deviations away from
the perturbing potential are given by 
n̄(r) =
limR→∞(R/π )

∑∞
l=0

∫ kF

0 dk
∫

d�[|�kl (r)|2 − |�0
kl (r)|2],

where �kl (r) and �0
kl (r) are partial components of the wave
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FIG. 11. Variations of the relative slope A(U )/A(0) determined
from Fig. 10 (red curve), the Fermi-liquid renormalization parameter
(blue curve), and the inverse of quasiparticle lifetime (black curve)
as functions of U and A(0) = 0.009.
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FIG. 12. Screening charge Z determined from Eq. (18) as a
function of the impurity potential V0 for selected U (upper panel)
and as a function of the interaction U for V0 = ±8t and ±24t (lower
panel). The other system parameters are the same as in Fig. 8.

function in the spherical coordinates in the presence and the
absence of the impurity, respectively. Taking into account
the interaction effects in the Fermi-liquid picture, the wave
functions of quasiparticles are renormalized (multiplied)
by the square root of the renormalization factor

√
ZFL(U ),

i.e., �
quasi
kl (r) = √

ZFL(U )�kl (r). Thus, we expect that

n̄(r) ∼ ZFL(U ) in good agreement with our numerical
findings.

The screening charge Z , defined in Eq. (18), is shown
in Fig. 12. The repulsive V0 > 0 potential leads to lowering
the number of particles in the system whereas the attractive
V0 < 0 potential yields this number to increase. There is a
perfect mirror symmetry between these two regimes as is seen
in the upper panel in Fig. 12 for different U . With increasing
the interaction, the screening of the impurity is weaker, i.e.,
the number of removed charges is smaller, as is presented
in the upper and lower panels of Fig. 12. A change in the
behavior of Z is seen around the Mott transition. Although
the screening charge |Z| is a decreasing function of U it
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liquid renormalization factor ZFL in two-dimensional systems with
V0 = 8t .

remains finite in the Mott insulator where FOs are absent (cf.
the lower panel of Fig. 12) (see Appendix C). The reason
is that at the impurity site �Ri0 and in its vicinity the particle
density is different from n̄hom for any finite V0 (see Fig. 9).
Therefore, the screening charge Z , which counts the particle
deviations for all lattice sites in Eq. (18), is finite even if FOs
in the asymptotic regime (very far from the impurity site) are
absent.

In Fig. 13 we compare the screening charge Z with the
Fermi-liquid renormalization factor ZFL for the same interac-
tion U . In this case, Z is calculated for V0 = 8t for 2D systems.
We approximately find a linear mutual dependence of these
quantities in the two-dimensional lattice.

B. Three-dimensional cubic lattice

We present our preliminary studies of FO on a small cubic
lattice with a system size of 11 × 11 × 11 with an impurity
V0 = 6t placed at the center (6a, 6a, 6a) of the cube. Simulat-
ing a larger lattice system (e.g., 21 × 21 × 21) demands more
sophisticated computational methods. In the present case we
have only five sites away from the impurity in each direction.
In Fig. 14 we show the particle density along the diagonal
(a, a, a) direction. We substitute the value of densities at the
impurity site by the second smallest values as in the 2D case.
We see that the amplitude decreases with the interactions
and approaches zero at the Mott transition Uc = 15t , which
is in good agreement with the predictions from linearized
DMFT [78]. We thus show some initial signatures of the
disappearance of the FOs also in the 3D system. However,
we cannot perform a decay analysis with just five lattice
sites in one direction. Also, the interferences from the system
boundaries (under periodic boundary conditions) make the
screening charge for such a small system to be difficult to
interpret at all. We have seen a similar behavior of the density
at the impurity site with U and V for the 2D and 3D systems. It
is left as an open question if we would also see this similarity
in 2D and 3D systems for the FO decay and the behavior of
the screening charge.
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FIG. 14. The local occupations plotted along the diagonal
(a, a, a) direction of the cubic lattice showing five sites:
�R1 = (7a, 7a, 7a), �R2 = (8a, 8a, 8a), �R3 = (9a, 9a, 9a), �R4 =
(10a, 10a, 10a), and �R5 = (11a, 11a, 11a) for selected interactions.
An impurity V0 = 6t is placed at the center of the cube, i.e.,
(6a, 6a, 6a).

VI. CONCLUSIONS

We investigated the Friedel oscillations and screening ef-
fects around an impurity potential within the Hubbard model
in finite lattices with a detailed study of 2D systems and
a preliminary case study for 3D systems. The initial result
of FO in 3D systems is a good starting point for under-
standing the FO in real materials with correlated electrons.
We solved the Hubbard model within the real-space dy-
namical mean-field theory at finite and zero temperatures
by using continuous-time quantum Monte Carlo simulations
and homogeneous self-energy approximations with numerical
renormalization group, respectively. In metallic, Fermi-liquid
regime the Friedel oscillations are damped by increasing the
interaction but their decaying pattern 1/rd is the same as in the
noninteracting ideal Fermi gas. We found that decaying of am-
plitude oscillations follows the behavior of the Fermi-liquid
renormalization factor, which decreases with increasing the
interaction. The same holds here for the screening charge. We
also observed that the lifetime of the Fermi-liquid quasipar-
ticles, which vanishes at the metal-insulator transition point,
does not play an essential role in understanding the behavior
of Friedel oscillations. In the Mott insulating phase the Friedel
oscillations, very far from the impurity potential, are absent.
Only very close to the impurity site there are deviations in the
density with respect to homogeneous systems. The screening
charge remains finite in the insulator. We found very good
agreement on a qualitative and even quantitative level between
the exact Monte Carlo simulations and the homogeneous self-
energy approximations, as presented in Appendix C. We thus
conclude that the homogeneous self-energy approximation,
which is much cheaper in computational time and cost, is
a reliable approximation for the present problems. We also
obtained initial results for Friedel oscillations in cases of few
impurities in the system where interesting interference effects
are seen. These results deserve a separate publication.
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VII. OUTLOOK AND PROPOSITION FOR FUTURE
EXPERIMENTS

This study is planned to be extended into three-dimensional
systems with larger number of lattice sites to confirm the
asymptotic 1/r3 behavior in the amplitude decaying of Friedel
oscillations. It is interesting to know if this decay is isotropic
and how the screening behaves with changing the interaction.
For this the real-space dynamical mean-field theory either
within the Monte Carlo simulations or within the numerical
renormalization group method should be parallelized and
the computational task should be split on many computing
nodes.

The Mott transition in two-dimensional Hubbard model
cannot be completely described within the single-site DMFT
approximation where the short-ranged spatial correlation is
neglected [81]. As a future work it can be investigated how
our results on the behavior of FO around the Mott transition
for a 2D Hubbard model would change with the inclusion of
spatial correlations beyond the single-site DMFT approxima-
tion. Our results can further motivate more involved studies
like behavior of the FO in the pseudogap regime before the
Mott transition in a 2D Hubbard model where the quasi-
particles disappear in the so-called antinodal region of the
momentum space, taking into account the effects of nonlocal
correlations.

It is interesting to probe if FO can be observed in real
Mott insulators (e.g., transition metal oxides like NiO, V2O3,
SrVO3, LaTiO3, etc.) in the presence of dopants adsorbed
at the surface and/or surface defects. A pressure-induced
Mott transition has been observed in the transition metal
oxide Fe2O3 combining methods of Mossbauer spectroscopy,
x-ray diffraction, and electrical resistance [82]. The same
has been recently theoretically modeled and seen by using
the DMFT+DFT (density functional theory) [83]. A Mott-
Hubbard transition in heterostructures of correlated oxides
using DFT+DMFT has been presented in [84]. It is interesting
to see if FOs due to the local defects affect the charge trans-
port properties, e.g., transport current, resistance across the
interface of such heterostructures. Studies of Mott localization
in nanostructures with magnetic impurities with an extended
nano-DMFT have been discussed in [85]. These studies can
be extended including dopants/impurities in the system to
investigate signature of FO in real Mott systems. Transition
metal oxides are the prospective functional materials for the
class of future electronic devices called Mott transistors or
often referred to as Mottronics which would be based on the
charge correlations between the electrons. Such devices would
find their application as an on/off switch, mem-resistors, etc.
Experimentally tailoring materials for such devices and mea-
suring the transport properties like the temperature-dependent
resistivity is an emerging field of research [86,87]. It is a
relevant point to investigate if the FOs influence the elec-
trical conductance, resistivity, transport current, and other
transport properties of such Mottronic devices by producing
local quantum ripples and noises due to the presence of local
defects/impurities. Any signature of FOs in the output char-
acteristics of these devices may be used as an indicator to spot
local defects and their role in affecting the performance of the
same. The FOs may be detected in probing the surfaces with

scanning tunneling microscopy (STM) like in the case of [88].
Our model calculations should motivate new experiments and
ab initio calculations on real materials along this direction.
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APPENDIX A: ESTIMATION OF THE Uc1 AND Uc2 FOR
THE “1D TOY MODEL” USING R-DMFT+ CT-QMC

We study the Mott transition for the 1D Hubbard model
at finite temperature within R-DMFT + CT-QMC following
the numerical scheme presented in [80]. According to our
calculations, β = 5/t is above the critical temperature while
β = 20/t is below the critical temperature where the coexis-
tence region separates the metallic from the insulating phase
(cf. Fig. 15). We estimate the two transition points Uc1 =
6.6t,Uc2 = 7.2t by examining the behavior of the double
occupancy (〈d0〉) with the interactions as shown in Fig. 15
(lower panel). 〈d0〉 is directly obtained from the CT-QMC
calculations. 〈d0〉 decreases as U increases showing a dis-
continuous jump to a lower value at a certain interaction
strength Uc2 when the system becomes insulating. Again,
as the interaction is decreased from the insulating solution,
another discontinuous jump is seen in d0, at an interaction
strength Uc1 which is slightly lower than Uc2.

APPENDIX B: TECHNICAL DETAILS OF CT-QMC
SOLVER

We present some technical details of the CT-QMC solver
developed by us based on the approach of Haule [74]. For each
physical set of parameters (U , β) we solve the R-DMFT equa-
tions iteratively. We assume that the solution is achieved, if a
difference between the Green’s functions G(τ ) in the last four
iterations is lower than our preassigned convergence (conv)
parameter. In our calculations the Green’s function G(τ ) used
in the above convergency condition is calculated by taking
the Fourier transform from G(iωn). G(iωn) is determined by
our quantum Monte Carlo hybridization expansion solver for
the maximal number of Matsubara frequencies ωn given by
Nmax [74], while its asymptotic form for large |ωn| up to |ωn|3
is determined analytically [89]. The solver detemines G(iωn)
and their respective stochastic errors. Each time the solver is
used we check whether the Green’s function for the highest
calculated Matsubara frequency agrees with its asymptotic
form. If not, we increase Nmax until this agreement is achieved.
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FIG. 15. Variation of the double occupancy (d0) with the interac-
tion (U ) at the temperature β = 5/t (upper panel), β = 20/t (lower
panel) for a homogeneous 1D lattice chain within the R-DMFT+
CT-QMC method. The data from the DMFT solutions obtained by
decreasing and increasing U are marked with the red and blue points,
respectively.

After every subsequent iteration we also increase the number
of Monte Carlo steps NMC used in the CT-QMC solver. Nmax

and NMC are monitored individually for each lattice site.
If Nmax or NMC increases, then the computational time

also increases. As explained by Haule for lower temperatures
higher and higher orders must be probed in the hybrydization
expansion [74]. We observe this behavior also in our calcula-
tions. In our case, one iteration lasts around 3 h for our 1D
toy model with NL = 50 (β = 20/t,U = 6t, conv = 0.005)
and around 8 h for the 2D 31 × 31 lattice (β = 15/t,U =
8t , and conv = 0.01). These representative values substan-
tiate the fact that achieving results for the 2D systems for
low-temperature, high interactions with a greater accuracy is
computationally nontrivial. In general it is difficult to reach
a convergent solution for high interactions. Each time we
restarted the calculations for high-U values from the already
converged solution of the low-U values. Yet, achieving phys-
ically convergent solution for very high U (in the insulating
regime) was nontrivial unlike in the case of HSEA.
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FIG. 16. (Upper panel) Friedel oscillations in particle densities at
different lattice sites in presence of the single-impurity potential V0 =
2t placed at Ri = 250a in a 1D chain with NL = 500 sites. Different
colors correspond to different interactions U which are accounted
for by using R-DMFT within HSEA. The insets show FOs in the
neighborhood of the impurity. (Lower panel) Variation of the local
density deviations as a function of inverse of the relative distance
from the impurity site for the same. (Compare with Figs. 3 and 5 for
the equivalent CT-QMC results.)

APPENDIX C: COMPARISON BETWEEN
R-DMFT+CT-QMC AND HSEA FOR THE 1D TOY MODEL

We present the analogy and the qualitative agreement
between the exact Monte Carlo and the HSEA for the 1D toy
model. Thereby, we claim that the HSEA is also a reliable ap-
proximation for studying FOs in higher-dimensional lattices.

In Fig. 16 (upper panel) we present the density n̄i on
different lattice sites where NL = 500 sites and when the
impurity potential V0 = 2t is set on the Ri = 250a site. Within
the HSEA we are able to work within much larger lattices as
compared to the case of CT-QMC. Results are presented for
different interactions U marked by lines in different colors. In
the zoomed areas we show FO in the vicinity of the impurity
site. Away form the impurity site the relative changes in
the densities are very small, much lower than 1% even at
T = 0. With increasing U the FOs are weaker and disappear
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FIG. 17. Variation of the relative slope A(U )/A(0) determined
from Fig. 16 as a function of U and A(0) = 0.154. The other system
parameters are the same as in Fig. 16. (Compare with Fig. 6 for the
equivalent CT-QMC results.)

completely when U > Uc, where Uc is the critical interaction
where the Mott-Hubbard MIT occurs. In Fig. 16 (lower panel)
we plot the local density deviations |n̄i − n̄hom| as a function
of the inverse of the relative distance from the impurity site,
i.e., 1/|Ri − Ri0 |, where Ri0 = 250a. The asymptotic linear
decay is visible in agreement with Eq. (1) in the presence of
interactions. The points shown in Fig. 16 (lower panel) follow
the approximate linear rule |n̄i − n̄hom| = Ax + B, where x =
1/|Ri − Ri0 | and the parameters A and B are determined by
fitting procedure. In particular, the slope parameter A = A(U )
describes changes in the FO amplitude with U . We see that
the slope A(U ) decreases with increasing U and vanishes at
the metal-insulator transition (cf. Fig. 17) at Uc ≈ 9t . The
critical value Uc determined from the A(U ) curve is in perfect
agreement with the linearized DMFT [78]. We see all these
behaviors qualitatively agree with the CT-QMC results (cf.
Figs. 3, 5, and 6 for comparison). However, the value of Uc is
larger than that obtained within CT-QMC (Uc1 = 6.6t,Uc2 =
7.2t), and the curve has a convex nature as compared to
the concave behavior in CT-QMC, but again A(0) is around
0.154 in both the cases. While the larger value of Uc can be
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FIG. 18. Screening charge Z determined from Eq. (18) as a
function of the interaction U for V0 = ±2t and ±7t (lower panel).
The other system parameters are the same as in Fig. 16. [Compare
with Fig. 7 (upper panel) for the equivalent CT-QMC results.]

justified as an effect of zero temperature (strictly speaking,
β = 10 000/t) in this case, it is difficult to address the reason
behind the convex/concave nature of the decay curves in
the two cases. This could be an effect of either the finite
temperature, or the homogeneous self-energy approximation,
or the use of different solvers. A more specific comment on
this point is beyond the scope of the current calculations.

The screening charge Z , defined in Eq. (18), is shown in
Fig. 18. On comparing it with the equivalent CT-QMC case in
Fig. 7 (upper panel) we see that in both the cases Z decreases
with U and shows a change in the behavior at the Mott tran-
sition. In case of CT-QMC for a low temperature β = 15/t ,
Z actually becomes zero beyond the Mott transition while in
case of the HSEA some small finite residual screening charge
is seen which could be due to the HSEA wherein additional
contribution from the inhomogeneous part of the self-energy
is neglected. Nevertheless, HSEA reproduces the qualitative
behavior of Z with U and arrives at the common conclusion
that interaction weakens screening, confirming its reliability
in also studying Z in distances close to the impurity.

[1] J. Friedel, Philos. Mag. 43, 153 (1952).
[2] J. Friedel, Nuovo Cimento Suppl. 7, 287 (1958).
[3] C. Kittel, Quantum Theory of Solids (Wiley, New York, 1963).
[4] F. García-Molinear, Quantum-mechanical techiniques, in

Theory of Imperfect Crystalline Solids: Trieste Lectures
1970 (International Atomic Energy Agency, Vienna,
1971), p. 1–100.

[5] J. Villain, M. Lavagna, and P. Bruno, C. R. Phys. 17, 276 (2016).
[6] É. Daniel, C. R. Phys. 17, 291 (2016).
[7] C. Benta, C. R. Phys. 17, 302 (2016).
[8] A. Georges, C. R. Phys. 17, 430 (2016).

[9] D. M. Eigler and E. K. Schweizer, Nature (London) 344, 524
(1990).

[10] M. F. Crommie, C. P. Lutz, and D. M. Eigler, Science 262, 218
(1993).

[11] E. J. Heller, M. F. Crommie, C. P. Lutz, and D. M. Eigler, Nature
(London) 369, 464 (1994).

[12] H. C. Manoharan, C. P. Lutz, and D. M. Eigler, Nature (London)
403, 512 (2000).

[13] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibl, Appl. Phys.
Lett. 40, 178 (1982); Phys. Rev. Lett. 49, 57 (1982); 50, 120
(1983).

115118-13

https://doi.org/10.1080/14786440208561086
https://doi.org/10.1080/14786440208561086
https://doi.org/10.1080/14786440208561086
https://doi.org/10.1080/14786440208561086
https://doi.org/10.1007/BF02751483
https://doi.org/10.1007/BF02751483
https://doi.org/10.1007/BF02751483
https://doi.org/10.1007/BF02751483
https://doi.org/10.1016/j.crhy.2015.12.010
https://doi.org/10.1016/j.crhy.2015.12.010
https://doi.org/10.1016/j.crhy.2015.12.010
https://doi.org/10.1016/j.crhy.2015.12.010
https://doi.org/10.1016/j.crhy.2015.12.012
https://doi.org/10.1016/j.crhy.2015.12.012
https://doi.org/10.1016/j.crhy.2015.12.012
https://doi.org/10.1016/j.crhy.2015.12.012
https://doi.org/10.1016/j.crhy.2015.11.006
https://doi.org/10.1016/j.crhy.2015.11.006
https://doi.org/10.1016/j.crhy.2015.11.006
https://doi.org/10.1016/j.crhy.2015.11.006
https://doi.org/10.1016/j.crhy.2015.12.005
https://doi.org/10.1016/j.crhy.2015.12.005
https://doi.org/10.1016/j.crhy.2015.12.005
https://doi.org/10.1016/j.crhy.2015.12.005
https://doi.org/10.1038/344524a0
https://doi.org/10.1038/344524a0
https://doi.org/10.1038/344524a0
https://doi.org/10.1038/344524a0
https://doi.org/10.1126/science.262.5131.218
https://doi.org/10.1126/science.262.5131.218
https://doi.org/10.1126/science.262.5131.218
https://doi.org/10.1126/science.262.5131.218
https://doi.org/10.1038/369464a0
https://doi.org/10.1038/369464a0
https://doi.org/10.1038/369464a0
https://doi.org/10.1038/369464a0
https://doi.org/10.1038/35000508
https://doi.org/10.1038/35000508
https://doi.org/10.1038/35000508
https://doi.org/10.1038/35000508
https://doi.org/10.1063/1.92999
https://doi.org/10.1063/1.92999
https://doi.org/10.1063/1.92999
https://doi.org/10.1063/1.92999
https://doi.org/10.1103/PhysRevLett.49.57
https://doi.org/10.1103/PhysRevLett.49.57
https://doi.org/10.1103/PhysRevLett.49.57
https://doi.org/10.1103/PhysRevLett.49.57
https://doi.org/10.1103/PhysRevLett.50.120
https://doi.org/10.1103/PhysRevLett.50.120
https://doi.org/10.1103/PhysRevLett.50.120


B. CHATTERJEE et al. PHYSICAL REVIEW B 100, 115118 (2019)

[14] K. Kanisawa, M. J. Butcher, H. Yamaguchi, and Y. Hirayama,
Phys. Rev. Lett. 86, 3384 (2001).

[15] Y. Hasegawa, M. Ono, Y. Nishigata, T. Nisho, and T. Eguchi,
J. Phys.: Conf. Ser. 61, 399 (2007).

[16] M. Bouhassoune, B. Zimmermann, P. Mavropoulos, D.
Wortmann, P. H. Dederichs, S. Blugel, and S. Lounis, Nat.
Commun. 5, 5558 (2014).

[17] P. Sessi, V. M. Silkin, I. A. Nechaev, Th. Bathon, L. El-Kareh,
E. V. Chulkov, P. M. Echenique, and M. Bode, Nat. Commun.
6, 8691 (2015).

[18] K. W. Clark, X-G. Zhang, G. Gu, J. Park, G. He, R. M. Feenstra,
and A.-P. Li., Phys. Rev. X 4, 011021 (2014).

[19] A. M. Clogston, Phys. Rev. 125, 439 (1962).
[20] J. Callaway, J. Math. Phys. 5, 783 (1964).
[21] I. Adawi, Phys. Rev. 146, 379 (1966).
[22] J. Rudnick and E. A. Stern, Phys. Rev. B 7, 5062 (1973).
[23] A. M. Gabovich, L. G. II’chenko, E. A. Pashitskii, and Y. A.

Romanov, Zh. Eksp. Teor. Fiz. 75, 249 (1978) [Sov. Phys.–
JETP 48, 124 (1978)].

[24] F. Flores and A. M. Stoneham, J. Phys. Chem. Solids 40, 531
(1979).

[25] G. D. Mahan, Int. J. Mod. Phys. 09, 1313 (1995); 9, 1327
(1995).

[26] S. Lounis, P. Zahn, A. Weismann, M. Wenderoth, R. G. Ulbrich,
I. Mertig, P. H. Dederichs, and S. Blügel, Phys. Rev. B 83,
035427 (2011).

[27] O. P. Sinha, Am. J. Phys. 38, 996 (1970).
[28] I. Affleck, L. Borda, and H. Saleur, Phys. Rev. B 77, 180404(R)

(2008).
[29] Y. Tao and G. Bergmann, Eur. Phys. J. B 85, 42 (2012).
[30] A. K. Mitchell, P. G. Derry, and D. E. Logan, Phys. Rev. B 91,

235127 (2015).
[31] P. G. Derry, A. K. Mitchell, and D. E. Logan, Phys. Rev. B 92,

035126 (2015).
[32] R. Egger and H. Grabert, Phys. Rev. Lett. 75, 3505 (1995);

in Quantum Transport in Semiconductor Submicron Structures,
edited by B. Kramer NATO-ASI Series E (Kluwer, Dordrecht,
1996).

[33] A. Leclair, F. Lesage, and H. Saleur, Phys. Rev. B 54, 13597
(1996).

[34] R. Egger and H. Grabert, Phys. Rev. Lett. 79, 3463 (1997).
[35] G. Bedürftig, B. Brendel, H. Frahm, and R. M. Noack, Phys.

Rev. B 58, 10225 (1998).
[36] V. I. Fernández and C. M. Naón, Phys. Rev. B 64, 033402

(2001).
[37] G. F. Giuliani, G. Vignale, and T. Datta, Phys. Rev. B 72,

033411 (2005).
[38] D. F. Urban and A. Komnik, Phys. Rev. Lett. 100, 146602

(2008).
[39] W. Ziegler, H. Endres, and W. Hanke, Phys. Rev. B 58, 4362

(1998).
[40] J. K. Freericks, Phys. Rev. B 70, 195342 (2004).
[41] P. Lederer and M. Rozenberg, Europhys. Lett. 81, 67002 (2008).
[42] E. C. Andrade, E. Miranda, and V. Dobrosavljević, Phys. Rev.
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