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The Beenakker-Mazur method of calculation of transport coefficients for suspensions has been an-
alyzed. The analysis relies on calculation of the hydrodynamic function and the effective viscosity
with higher accuracy and comparison of these characteristics to the original Beennakker-Mazur re-
sults. Comparison to numerical simulations is also given. Our calculations go along with the idea
of Beenakker and Mazur, but avoid unnecessary approximations. Our higher accuracy results dif-
fer significantly from results obtained initially by Beenakker and Mazur for volume fractions φ

> 25%. Moreover, our results agree with the precise numerical simulations of Abade and Ladd
for volume fractions φ < 15% and volume fractions φ ≈ 45%, whereas for volume fractions
15% < φ < 40%, we observe pronounced discrepancies. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4764303]

I. INTRODUCTION

Colloidal suspensions, which are systems consisted of
minute particles immersed in liquid, occur widely both in na-
ture and industry. They represent a diverse class of systems.
The diversity follows from two factors. First, different kinds
of minute particles may be found in a colloidal suspension
such as spherical polymers1 or hard particles. Second, differ-
ent types of interparticle interactions such as electrostatic, van
der Waals,2 or magnetic interactions3 can appear. This diver-
sity implies the variety of physical phenomena of practical
importance.

Dynamic light scattering is a widespread experimental
method used to investigate colloidal suspensions.4, 5 In such
experiments, the autocorrelation function of intensity of scat-
tered light is measured. The autocorrelation function con-
tains information about statical and dynamical properties of
colloidal suspensions. In particular for short-time scales, au-
tocorrelation function is characterized by the hydrodynamic
function. Another quantity which also characterizes the short-
time behavior of suspensions is low shear, high frequency ef-
fective viscosity.6

Hitherto, the most comprehensive theory of the above
mentioned short-time characteristics is “δγ scheme” intro-
duced by Beenakker and Mazur.7 Originally, it was used for
hard-sphere suspensions. Nowadays, δγ scheme is applied to
charged particles as well.8–12 This scheme is based on statis-
tical physics considerations. The key point of the theory is to
represent macroscopic characteristics of suspensions by series
in renormalized fluctuations. In their calculations, Beenakker
and Mazur truncated the series to the second order. However,
this truncation is not the only approximation assumed in
their articles. Due to the technical difficulties, additional
approximations were adopted. They rely on the truncation
of hydrodynamic matrices by taking into account the lowest
order hydrodynamical multipoles only. Consequences of the
truncation were not estimated systematically. The aim of the

present work is to study the effect of these additional approx-
imations. To achieve this, we calculate the transport coeffi-
cients in frame of the second order δγ scheme, but with large
number (extrapolated to infinity) of the hydrodynamic mul-
tipoles. We compare original Beenakker and Mazur results
to the results obtained by us, and to the results of numerical
simulations.

The article is organized as follows. In Sec. II, the ba-
sic definitions are introduced and expressions for the hy-
drodynamic function and effective viscosity are given. The
Beenakker-Mazur method is formulated in the Sec. III.
Section IV is devoted to the presentation and comparison of
the results obtained within different approximation schemes.
The article is summarized in Sec. V.

II. MACROSCOPIC CHARACTERISTICS
AND GRAND MOBILITY MATRIX

In this article, we focus on colloidal suspension con-
sisted of spherical particles immersed in an incompressible
liquid. Brownian dynamics of particles, on proper time scale,
can be described by generalized Smoluchowski equation.13

The equation governs evolution of the probability distribu-
tion of particles p(R1, . . . RN, t) in time instant t, where
R1, . . . , RN stand for positions of particles. As it turns out,
short time behavior of the autocorrelation function of intensity
of scattered light at equilibrium is characterized by the hydro-
dynamic function H(q).5, 13 Another quantity characterizing
macroscopic behavior of the suspension is high frequency-
low shear effective viscosity ηeff.6

In order to present the microscopic expressions for hy-
drodynamic function H(q) and effective viscosity ηeff, grand
mobility matrix should be introduced. This matrix charac-
terizes a response of suspension of freely moving particles
in ambient flow under action of forces and torques applied
to each particle. The suspension consists of N identical hard
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spherical particles of radius a immersed in an infinite incom-
pressible Newtonian liquid with shear viscosity η. Inertia of
particles and inertia terms in the Navier-Stokes equation are
assumed to be negligible. As a consequence, the flow is gov-
erned by steady Stokes equations.14 Mazur and Bedeaux ex-
tended steady Stokes equations for the space inside particles
in the following way:

∇p(r) − η�v(r) = f (r), (1a)

∇ · v(r) = 0, (1b)

introducing induced force densities f (r).15 Here, p(r) and
v(r) stand for pressure and velocity field of the suspension.
These equations should be supplemented with appropriate
boundary conditions. We consider hard spheres with the stick
boundary conditions

v(r) = U i(r) = V i + �i × (r − Ri) for |r − Ri | ≤ a,

(2)

p(r) = 0 for |r − Ri | ≤ a, (3)

where V i and �i denote translational and rotational velocity
of ith particle.

Due to the above extension, the flow of suspension in all
space (i.e., particles and liquid) is given with the aid of Green
function16

v(r) =
∫

d3r ′G(r − r ′) · f (r ′), (4)

where Oseen tensor G17 has the following form:

G(r) = 1

8πη

1 + r̂ r̂
|r| , r̂ = r

|r| . (5)

Moreover, the induced force densities f (r) are localized
only on the surface of particles, that is

f (r) =
N∑

i=1

f i(r) (6)

with f i(r) acting on the surface of ith particle.18, 19

A. Friction problem

In order to find the grand mobility matrix, one starts with
the friction problem.20 To do that, let us assume translational
velocities V i and rotational velocities �i of particles (i = 1,
. . . , N) immersed in liquid in which initially an ambient flow
v0(r) is present. The aim of the friction problem is to calculate
the force densities induced on particles, f i(r).

The solution of Stokes equations (1) for single particle
friction problem has the following linear form:

f 1(r) =
∫

d3r ′ Z0(R1, r, r ′) · (U1(r ′) − v0(r ′)). (7)

Single particle friction operator Z0 is localized on the surface
of particle.21 It means that the induced force density f 1(r) is
localized on the particle surface and its value depends only on
the field U1(r) − v0(r) in points |r − R1| = a. Equation (7)
will have the following form in shorthand notation:

f 1 = Z0(1) · (U1 − v0), (8)

where integration symbol and integral variables are omitted,
and the position of particle is denoted by its number.

It is worth mentioning that the single particle friction
problem has been solved for a variety of boundary conditions,
and various kinds of particles, e.g., spherical polymers. More-
over, Z0 operator is the only quantity by which boundary con-
ditions enter into the solution of the problem for suspension.
In more general case where particles are different than hard
spheres, the induced force density f 1 may be localized not
only on the surface, but also inside the particle. In literature,
one can find an explicit form of Z0 operator for several situa-
tions, e.g., those considered in Refs. 22–24.

Due to the linearity of Stokes equations, the solution of
the friction problem for single particle given by the Eq. (8)
may be used to solve the friction problem for suspension. In
this case, the ith particle in suspension is surrounded by mod-
ified ambient flow

v0(r) +
∑
j �=i

∫
d r ′ G(r − r ′) f j (r ′), (9)

which includes ambient flow v0(r), and also flow induced by
the force densities f j (r) acting on every particle except i.
Equation (8), with the above modified ambient flow, leads to
the following formula:

f i = Z0(i) ·
⎛
⎝U i − v0 −

∑
j �=i

G f j

⎞
⎠ , (10)

which is also written in shorthand notation.
The formal solution of the above equation is given by the

expression

f i =
N∑

j=1

Zij (1 . . . N)(U j − v0), (11)

where friction operator Zij has the following form of scatter-
ing series:

Zij (1 . . . N ) = δij Z0(i) + (1 − δij )Z0(i)G Z0(j )

+
N∑′

k=1

Z0(i)G Z0(k)G Z0(j ) + · · · . (12)

The different terms in Eq. (12) correspond to a scattering
sequence. The prime symbol indicates summation, where k
is different than neighboring particle indices in scattering
sequence.

Equations (11) and (12) represent the formal solution of
the friction problem. Those equations can also be used to
solve mobility problem. The aim of the mobility problem is to
find the response of suspension of freely moving particles in
ambient flow v0(r) to external force Fi and torque T i acting
on them. By the response of the suspension, we mean the ve-
locity of particles (translational V i and rotational �i) and also
the force densities f i(r). Mobility problem may be solved by
the partial inversion of the friction problem.25
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B. Multipole expansion

The partial inversion mentioned above and other opera-
tions on the operators can be carried out with the use of the
multipole expansion formalism.19, 26, 27 This is a formalism, in
which the force densities are represented by their moments

f i(r) →

⎡
⎢⎢⎣

Fi

T i

Si

. . .

⎤
⎥⎥⎦ . (13)

Here, the total force Fi and torque T i produced by ith particle
on the fluid, and also Si - symmetric and traceless part of the
first moment of the force density are defined as follows:

Fi =
∫

d3r �i(r) f i(r), (14a)

T i =
∫

d3r �i(r) (r − Ri) × f i(r), (14b)

Si =
∫

d3r �i(r) (r − Ri) f i(r), (14c)

where �i(r) denotes the characteristic function of ith particle:
it equals 0 whenever r points outside the particle, and equals 1
otherwise. Similarly, velocities U i − v0 have in the multipole
expansion formalism the following representation:

U i(r ′) − v0(r ′) →

⎡
⎢⎢⎣

V i − v0(Ri)
�i − ω(Ri)

g(Ri)
. . .

⎤
⎥⎥⎦ , (15)

where ω(i), and g(i) are defined, respectively, in terms of the
gradient of ambient flow in the center of a particle

ω(R) = 1

2
(∇ × v0)r=R, (16)

g(R) = 1

2
(∇αv0,β + ∇βv0,α)r=R. (17)

Multipole expansion for the force densities, Eq. (13), and
for velocities, Eq. (15), determine the multipole expansion of
the single particle friction operator Z0 and the Green opera-
tor G. In the multipole picture, they become infinite matrices.
The Green operator G(ij ) depends on the relative position
Ri − Rj of the particles i,j. Their detailed form in the multi-
pole space may be found in Ref. 28.

C. Mobility problem

With the aid of the multipole expansion, one can partially
invert the friction problem obtaining the solution of the mo-
bility problem.25 The solution has the following linear form:

⎡
⎢⎢⎢⎣

V i − v0(Ri)

�i − ω(Ri)

−Si

. . .

⎤
⎥⎥⎥⎦=

N∑
j=1

⎡
⎢⎢⎢⎣

μt t
ij μtr

ij μtd
ij . . .

μrt
ij μrr

ij μrd
ij . . .

μdt
ij μdr

ij μdd
ij . . .

. . . . . . . . . . . .

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Fj

T j

g(Rj )

. . .

⎤
⎥⎥⎥⎦ ,

(18)

in which the grand mobility matrix appears. The matrix de-
pends on the position of particles. Its block elements, μt t

ij , μtr
ij ,

etc., are also matrices. The particular blocks are related to a
few important problems. For example, velocities V i of freely
moving, torque-free particles, on which forces Fj act in ab-
sence of ambient flow, can be calculated with the use of the
μt t

ij block. Moreover, the symmetric dipole surface force Si—
essential for effective viscosity—of force-free and torque-free
particles in shear flow can be calculated by means of the μdd

ij

block.
The grand mobility matrix, similarly to operator Zij

given by Eq. (12), also has the form of scattering sequence.29

For the sector tt of the grand mobility matrix from Eq. (18),
this fact is expressed by the following formula:

μt t
ij (1 . . . N )

= P t

[
δijμ0(i) + (1 − δij )μ0(i)P Z0(i)G(ij )Z0(j )Pμ0(j )

−
N∑

k=1

′μ0(i)P Z0(i)G(ik)Ẑ0(k)G(kj )Z0(j )Pμ0(j )

+ · · ·
]

P t . (19)

In the above expression, the single particle mobility matrix
μ0(i) is defined as follows:

μ0(i) = (P Z0(i)P)−1, (20)

where operator P projects multipole vectors from Eqs. (13) or
(15) on the two lowest multipoles and the inversion should be
done in space of these two multipoles. P t projects on the first
multipole. Single particle convective friction operator25 Ẑ0 is
defined with the following expression:

Ẑ0(i) = Z0(i) − Z0(i)Pμ0(i)P Z0(i). (21)

For the dd sector of the grand mobility matrix, the scat-
tering series has the following form:

μdd
ij (1 . . . N)= Pd

[
δij Ẑ0(i)−(1 − δij )Ẑ0(i)G(ij )Ẑ0(j )

+
N∑

k=1

′ Ẑ0(i)G(ik)Ẑ0(k)G(kj )Ẑ0(j )+· · ·
]

Pd ,

(22)

where Pd is projection on the third multipole of vectors (13)
or (15).

D. Macroscopic characteristics

In the dynamic light scattering experiments, the dynamic
structure factor is probed. When the system is at equilibrium,
for short-time scales the dynamic structure factor is charac-
terized by the lowest terms of its cumulant expansion. The
first cumulant is given by the static structure factor and hy-
drodynamic function.5, 13 With the aid of the matrix μt t

ij , the
microscopic expression for the hydrodynamic function can be
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introduced along the line of Beenakker and Mazur,

H (k) = lim∞

〈
1

Nμ0

N∑
i,j=1

k̂ · μt t
ij (R1 . . . RN ) · k̂

× exp[ik · (Ri − Rj )]

〉
, (23)

where μ0 stands for the single particle mobility coefficient
(defined with formula μt t

11(R1) = μ01 for a single particle,
with 1 identity matrix). The brackets represent an equilib-
rium ensemble average. In addition, the thermodynamic limit
N → ∞, with fixed concentration n = N / V, denoted by lim∞ ,

has been performed. Here, V is the volume of the system.
Similarly, low shear-high frequency effective viscosity is

given by the following expression:

ηeff

η
= (1 − A)−1, (24)

where

A = 1

10η
lim
k→0

lim∞

〈
1

V

N∑
i,j=1

exp[−ik(Ri − Rj )]

× [
μdd

ij (1 . . . N)
]
αββα

〉
, (25)

and the Einstein summation convention for repeating indexes
α and β has been used.

III. FORMULATION OF δγ SCHEME

To calculate the hydrodynamic function, one copes with
the scattering series given by Eq. (19) whereas in context of
the effective viscosity, the scattering series of the form (22)
appears. In the former scattering series, there are a few single-
particle operators, μ0, Z0, and Ẑ0. In the latter, there is only
one, Ẑ0. Due to this, the formulation of the Beenakker-Mazur
method in their articles differs in details for the effective vis-
cosity and the hydrodynamic function.7, 30, 31 In this article,
we formulate the Beennakker-Mazur method for the scatter-
ing series of the following form:

T ij (1 . . . N ) = δij M(i) + (1 − δij )M(i)G(ij )M(j )

+
N∑′

k=1

M(i)G(ik)M(k)G(kj )M(j ) + · · · ,

(26)

which for M = −Ẑ0 converts to the scattering series
given in Eq. (22). In context of the hydrodynamic func-
tion, formulation of the Beenakker-Mazur method requires
either simple modification of the scheme presented be-
low, or to express both scattering series in the form of
Eq. (26). The latter may be found in Ref. 32.

In order to formulate δγ scheme for the scattering series
given by the expression (26), we follow the idea of Beenakker

and Mazur. To this end, we consider kernel T ,

T (R, R′; 1 . . . N) =
N∑

i,j=1

δ(R − i)T ij (1 . . . N)δ(R′ − j ),

(27)
which corresponds to the scattering series T given with
Eq. (26). The kernel T is represented in the following form:

T = M + MG̃M + MG̃MG̃M + · · · , (28)

where M and G̃ are integral operators in the multipole space.
M is defined with expression

M(R, R′; 1 . . . N ) = δ(R − R′)
N∑

i=1

M(Ri)δ(R − Ri),

(29)
whereas G̃, which corresponds to G operator, with expression

G̃(Ri , Rj ) =
{

G(Ri , Rj ) for Ri �= Rj

0 for Ri = Rj
. (30)

By product of the operators, e.g., MG̃, we will mean the
following integral:

[MG̃](R, R′; 1 . . . N)

≡
∫

d R′′M(R, R′′; 1 . . . N)G̃(R′′, R′). (31)

Note that in Eq. (26) sum over i = k or k = j in the scattering
sequences is avoided. In the scattering sequence, the opera-
tor G(Ri , Rj ) never connects the same particle, i.e., i is never
equal to j. This is the reason for using in Eq. (28) G̃(Ri , Rj )
operator instead of G(Ri , Rj ). The only difference between
G(Ri , Rj ) and G̃(Ri , Rj ) operators is for Ri = Rj . This
trick introduced by Beenakker and Mazur results in the fact
that no condition on summation over the particles appears in
the scattering series (28).

A key step leading to the formulation of δγ scheme is
to renormalize G̃ and M operators appearing in the scatter-
ing series (28). This procedure consists in the resummation of
so called “ring-selfcorrelations.” “Ring-selfcorrelations” are
scattering structures of the following form:

MR(R) = M(R)[1 − G〈MR〉(R, R)M(R)]−1. (32)

The renormalized propagator G〈MR〉 is defined with the
equation

G〈MR〉 = G̃(1 − 〈MR〉G̃)−1, (33)

where the average of the following single-particle operator
appears:

MR(R, R′; 1 . . . N ) = δ(R − R′)MR(R)
N∑

i=1

δ(R − Ri).

(34)
For given one-particle density defined as n(R)
= 〈∑N

i=1 δ(R − Ri)〉, the last three equations determine
MR,MR , and G〈MR〉.

The resummation of the “ring-selfcorrelations” will be
omitted since it requires simple algebraic operations. As
it was shown in the original papers of Beenakker and
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Mazur,7, 30, 31 the operator T can be expressed in terms of fluc-
tuations MR − 〈MR〉 by

T = M + MG〈MR〉[1 − (MR − 〈MR〉)G̃〈MR〉]−1MR.

(35)
The G̃〈MR〉 operator appearing in the above relation is defined
with the formula

G̃〈MR〉(R, R′) =
{

G〈MR〉(R, R′) for R �= R′

0 for R = R′ ,
(36)

and, similarly to the propagator G̃ from definition (30), it
eliminates connections to the same particle in the scattering
series given by Eq. (35). In the δγ theory, the renormalized
expression, e.g., Eq. (35), is expanded in powers of the fluctu-
ations MR − 〈MR〉 up to certain order and then the average
in Eqs. (23) and (25) is performed. This closes the theory.

In the original papers,7, 30, 31 Beenakker and Mazur lim-
ited themselves to the second order in renormalized fluctu-
ations. In this case, the concentration of particles and two-
particle correlation function only are required to perform the
average. Moreover, they have taken in their scheme approxi-
mate form of Eq. (32)

MR(R) = M(R)[1 − G〈MR〉(R, R)|diagonal M(R)]−1.

(37)
Above, the symbol “diagonal” means taking the diagonal
part of matrix G〈MR〉(R, R). This diagonality has to be un-
derstood in the frame of the basis used in the original pa-
pers of Beenakker and Mazur. As authors of δγ theory sug-
gest, there should not be significant difference between both
formulations.31 However, definition (32) is natural, whereas
definition (37) is not. Indeed, taking diagonal terms depends
on basis in which matrices are presented.

In addition, they employed another approximations re-
lated to hydrodynamic matrices appearing in calculations.
These matrices with G〈MR〉 operator among them are of in-
finite dimension. The authors truncated them by regarding the
lowest order hydrodynamic multipoles only. It is worth noting
that they gave an inadequate estimate of the resultant error.

In the present article, we investigate the influence of
these hydrodynamical matrix truncations on the original
Beenakker-Mazur theory. Namely, we use Eq. (32) instead
(37) and use an accurate description of hydrodynamics by tak-
ing into account large number of hydrodynamic multipoles
(extrapolated to infinity). Details of the latter topic are pre-
sented in the Appendix.

IV. RESULTS AND DISCUSSION

In the series of articles, Beenakker and Mazur calculated
a few macroscopic characteristics of suspensions with the hy-
drodynamic function H(q) and high frequency effective vis-
cosity coefficient ηeff among them.7, 30, 31 Below, the results
calculated within the original Beenakker and Mazur scheme
will be denoted by δγ (BM) symbol.

We compare their results with our calculations within the
same δγ theory but with an accurate description of hydro-
dynamics and without unnecessary approximation given by
Eq. (37). For them, the symbol δγ will be used. The outcome
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FIG. 1. Hydrodynamic function H(q) for volume fractions 5%, 15%, and
25% (from top to bottom) in the frame of δγ theory at the second order (δγ ).
Comparison to Beenakker and Mazur results (δγ (BM))31 and numerical sim-
ulations of Abade et al.33

corresponding to the experiments and to the numerical simu-
lations of Abade et al.33 and Ladd34 are also given.

The hydrodynamic function is presented for volume frac-
tion 5%, 15%, 25% in Figure 1, and for volume fractions 35%
and 45% in Figure 2.

The hydrodynamic function from the above figures for
zero wave number H(0) = K (sedimentation coefficient) and
for infinite wave-number H (∞) = Ds

s /D0 (reduced short
time self-diffusion coefficient) are given in Table I. Inverse
of those coefficients is also given in Figs. 3 and 4. It should
be mentioned that curves are constructed basing on spline in-
terpolation between points following from the tables and from
obvious values of transport coefficients for zero volume frac-
tion. In case of reduced low shear, high frequency effective
viscosity ηeff/η for volume fractions 5%, 15%, 25%, 35%,
and 45%, three methods mentioned above give results placed
in Table II. The reduced effective viscosity ηeff/η is also pre-
sented in Fig. 5.

According to the results presented above, differences
between the calculations of Beenakker and Mazur and the
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45% (lower) in the frame of δγ theory at the second order (δγ ). Comparison
to Beenakker and Mazur results (δγ (BM))31 and numerical simulations of
Abade et al.33
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TABLE I. Reduced selfdiffusion and sedimentation coefficient.

Reduced self-diffusion Ds
s /D0 Sedimentation K

φ [%] δγ δγ (BM) Simulations δγ δγ (BM) Simulations

5 0.907 0.90 0.908 0.713 0.701 0.724
15 0.699 0.69 0.724 0.353 0.342 0.377
25 0.506 0.51 0.546 0.167 0.164 0.192
35 0.364 0.38 0.383 0.078 0.082 0.0949
45 0.245 0.28 0.243 0.040 0.043 0.0448

calculations of the authors of the present article are not signif-
icant up to volume fractions 25%. The discrepancy becomes
visible for higher volume fractions. Relative error (with re-
spect to our results) for volume fraction φ = 45% equals 8%
in case of sedimentation coefficient, and about 14% for rela-
tive self-diffusion and effective viscosity coefficients.

Having compared the results from the original articles
by Beenakker and Mazur to the results presented in this
article, next we compare our results to numerical simula-
tions. All macroscopic characteristics of suspensions given
in the tables above and in corresponding figures have the
following tendency. The effective viscosity and the inverse
of sedimentation and self-diffusion coefficients are overes-
timated by the δγ theory in almost the whole range of
the volume fractions under considerations, 0 < φ < 45%.
There is a consistency of the results of the δγ theory
and numerical simulations for volume fraction φ < 15%.
Then visible discrepancies appears. The highest relative er-
ror (with respect to numerical simulations) is for φ ≈ 35%. It
equals up to 18% in case of the sedimentation coefficient (this
value may be deduced from Table I). For higher volume frac-
tions φ > 35%, the discrepancies decrease and the curves cor-
responding to the δγ theory and numerical simulations tend to
intersect. The intersection is evident for the effective viscosity
and self-diffusion coefficient.

The discrepancy for volume fractions φ > 25% between
the original Beenakker-Mazur calculations and the calcula-
tions presented in this paper is caused by the approximations
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Abade et al.,33 and experiments.37, 38

of Bennakker and Mazur. The approximations give reason-
able outcome for the volume fractions less than 25%. For
higher volume fractions, more comprehensive hydrodynamic
description has to be taken.

To shed light on our results obtained in frame of the δγ

theory in comparison to numerical simulations, we invoke
the following fact. In the physics of suspensions, three fea-
tures of hydrodynamic interactions are often exhibited: their
long range, many body character, and strong hydrodynamic
interactions of close particles (lubrication corrections). The
δγ theory at the second order takes account of the first two
factors, but not the third one. It properly treats long range
hydrodynamic interactions and their many-body character is
grasped even in the lowest order by renormalization of the
particle response, i.e., resummation of “ring-selfcorrelations.”
The third factor is omitted. In fact, to fully take into account
strong interactions of close particles, that is in order to fully
take into account two body hydrodynamic interactions, one
has to go beyond the δγ theory with finite order in renormal-
ized fluctuations. Lack of lubrication corrections is the main
reason for the discrepancies in the range of the volume frac-
tions φ > 15%. The effective viscosity is overestimated and
the sedimentation and self-diffusion coefficients are underes-
timated in this regime up to the intersection points.

Lubrication corrections are also indespensable to de-
scribe properly the transport coefficients for the highest vol-
ume fractions, where the effective viscosity tends to infinity
and the sedimentation and self-diffusion coefficients van-
ish, as the experiment shows. Rough treatment of lubrication

TABLE II. Reduced effective viscosity.

Reduced effective viscosity ηeff/η

φ [%] δγ δγ (BM) Simulations34

5 1.15 1.15 1.139
15 1.59 1.59 1.527
25 2.36 2.27 2.17
35 3.67 3.33 3.33
45 5.81 5.00 5.65
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corrections may thus explain the slope of the curves cor-
responding to our results in frame of the δγ theory. They
show strongly increasing underestimation of the effective
viscosity and the inverse of sedimentation and self-diffusion
coefficients for very high volume fractions above intersection
points, outside the range of calculations presented here.

Lack of lubrication corrections suggests that reasonable
agreement of the δγ theory outcome with numerical simula-
tions may be accidental in character. In this view, it would
be desired to apply the theory to different particles than hard-
spheres and ask about the volume fraction for the intersection
points described above.

Nevertheless, the overestimation of the proper character-
istics for low and intermediate volume fractions and intersec-
tion (for φ ≈ 45% in case of the effective viscosity and self-
diffusion coefficients) and further underestimation for the vol-
ume fractions above the intersection points make the theory
one of the most successful approaches to describe the short-
time behavior of suspensions. This in not at all accidental.
Despite of the lack of lubrication in the theory, it has a fea-
ture, which remarkably distinguishes it from, e.g., virial ex-
pansion. The essence of the δγ theory—the resummation of
ring-selfcorrelations given in Eq. (35)—includes renormal-
ized operators G̃〈MR〉 and MR . These operators depend on
infinite number of particles, and in consequence, even in the
lowest order the δγ theory contains the collective behavior of
particles in suspension and treats long-range hydrodynamic
interactions properly.

V. SUMMARY

In the present article, macroscopic characteristics of
suspensions such as hydrodynamic function and low shear,
high frequency effective viscosity have been calculated in
the frame of the δγ theory at the second order. Although
Beenakker and Mazur carried out similar calculations about
thirty years ago, they adopted additional approximations,
which have been avoided in our work.

Despite our more accurate calculations give larger dis-
crepancies from numerical simulations than the original

Beenakker and Mazur results for intermediate volume frac-
tions, the δγ theory is still the most comprehensive statistical
physics theory for the description of short-time behavior of
suspensions. It takes into account long-range hydrodynamic
interactions and their many-body character. The lubrication
corrections are omitted in the theory, which limits its applica-
bility for not too high volume fractions. For this reason, the
theory able to incorporate the lubrication corrections would
be desired.

It is also worth noting that higher accuracy δγ scheme
presented in this article may be simply adopted to suspensions
consisted of different spherical particles than hard spheres
(e.g., spherical drops, spherical polymers). The scheme may
also be simply adopted to different distributions of particles
through the change of two-body correlation function.
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APPENDIX: DETAILS OF CALCULATIONS

The calculation of macroscopic characteristics of suspen-
sions in frame of the δγ theory requires to solve Eqs. (32)–
(34) first, and then to use the solution in expressions for trans-
port coefficients given by Eqs. (23) and (24). These expres-
sions for macroscopic characteristics have been taken at the
second order along the line of Beenakker and Mazur. At this
order, the volume fraction and two-particle correlation func-
tion are required as an input to the equations. As Beenakker
and Mazur, we have used the Percus-Yevick approximation
for the latter.

To solve the equations of the δγ theory, we have rep-
resented them in the complex multipole basis.19, 26, 27 In this
basis, the appropriate operators, e.g., MR and G̃, become the
infinite matrices indexed by three set of numbers: l = 1, 2,
. . . , ∞ and m = −l, . . . , l, and σ = 0, 1, 2. In our calcula-
tions, the matrices have been truncated by taking into account
multipoles with l ≤ L. We have performed a series of numeri-
cal calculations with L = 4, . . . , 12. Due to strong dependence
on truncation L, the results for the transport coefficients have
been extrapolated with L → ∞.

Below, we explain the extrapolation procedure for the
effective viscosity. For the volume fraction φ = 45%, its
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dependence on the following function on truncation param-
eter f(L) = (log L)2/L3 is presented in Fig. 6. The extrapolated
effective viscosity is determined as the intersection point of
the line passing through points corresponding to L = 11 and
L = 12 with vertical axis in Fig. 6. The values of effective vis-
cosity from Table II are obtained with this extrapolation pro-
cedure. It should be emphasized that the only motivation for
the ad hoc choice of f function is to make the curves for big L
close to straight line. Unfortunately, the authors do not know
any theoretical predictions of these asymptotes. For the hy-
drodynamic function, the extrapolation procedure is similar—
with the same function f(L).
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