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Abstract. Motivated by the rapidly growing possibilities for experiments
with ultracold atoms in optical lattices, we investigate the thermodynamic
properties of correlated lattice fermions in the presence of an external spin-
dependent random potential. The corresponding model, a Hubbard model with
spin-dependent local random potentials, is solved within dynamical mean-field
theory. This allows us to present a comprehensive picture of the thermodynamic
properties of this system. In particular, we show that for a fixed total number of
fermions spin-dependent disorder induces a magnetic polarization. The magnetic
response of the polarized system differs from that of a system with conventional
disorder.
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1. Introduction

Interacting quantum many-particle systems in the presence of disorder are of great interest not
only in condensed matter physics [1-6] but recently also in the field of cold atoms in optical
lattices [7—14]. In particular, ultracold gases have quickly developed into a fascinating new
laboratory for the study of quantum many-body physics. A major advantage of cold atoms
in optical lattices is the high degree of controllability of experimental parameters such as
the interaction and the disorder strength, which allows for a detailed comparison between
experiment and theory. Indeed, advanced techniques developed for experiments with ultracold
gases in optical lattices facilitate the realization and explicit study of model situations that are
not accessible in solid state physics. For example, it was recently demonstrated that it is possible
to prepare optical lattices with a spin-dependent hopping of the quantum particles [15-17].
Corresponding theoretical models had already been proposed earlier [18-22].

In this paper we discuss the thermodynamic properties of interacting spin-1/2 lattice
fermions with a repulsive, local interaction in the presence of a spin-dependent random
potential. In particular, we will compute the spin-dependent densities, the magnetization,
the magnetic susceptibility, the compressibility and the spin-dependent densities of states.
When the interaction is taken to be attractive the model has a superfluid phase, which was
recently investigated by Scalettar and collaborators [23]. It may be realized experimentally
in the following way. In an off-resonant electric field atoms experience a Stark shift of
their ground state energies, which is proportional to the light intensity. The optical lattice
is formed by superimposing laser waves propagating in different spatial directions. This
effectively leads to a periodic dependence of the electric field intensity and thereby to a
periodic potential. Disorder can be introduced by focusing a light beam on the optical lattice,
which is scattered from a diffusive plate. Such an effective random potential (speckle-type
disorder) is characterized by a very short correlation length and a pronounced statistical
independence [11, 12, 24]. Using laser beams with different polarization it is possible to
generate a random potential that acts differently on particles with different spin orientation in the

> 1In principle, the Falicov—Kimball model [21, 22] also belongs to this class of models since it may be viewed as
a fermionic lattice model with spin-dependent hopping amplitudes. Namely, one spin species can hop, whereas the
other one is fixed to the lattice.
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ground state [23]. The spin-dependent speckle disorder affects the local one-particle energies,
hopping amplitudes and interparticle interaction potentials. Since ultracold atoms in optical
lattices can be experimentally prepared in quite different ways, two model situations are of
particular interest: (a) the total number of fermions is conserved and (b) the number of fermions
with different spin projection is individually conserved; the latter case is referred to as a ‘spin-
imbalanced’ system. Nanguneri et al [23] analyzed case (b) for an attractive interaction between
the fermions, which leads to a pairing instability. Employing Bogoliubov—de Gennes mean-field
theory, they found that spin-dependent disorder leads to a suppression of the pairing state.

In the first part of this paper, we investigate the case when the total number of fermions
is conserved (i.e. when the two spin populations have a common chemical potential) for a
repulsive local interaction. In particular, we will focus on fillings off half-filling, since in this
case spin-dependent disorder induces a finite magnetization through the broadening of the spin
subband on which the disorder acts. At the same time antiferromagnetism and characteristic
correlation features that occur only at half-filling, such as the Mott metal-insulator transition
[1,25-29], will be absent®. The spin-dependent randomness is introduced through local, random
and spin-dependent potentials. Such a model is closely related to electronic models investigated
in solid state physics [31], in particular correlated lattice electrons in random potentials; see,
for example, [32-36]. However, in solid state systems it is not possible (or, at least, not yet
possible) to tune and manipulate spin-dependent potentials experimentally. By contrast, as
discussed above, optical lattices with ultracold atoms do offer such possibilities. In particular,
the model where the total number of fermions is conserved is applicable to systems with atoms
characterized by a fast dipolar relaxation, such as Cr or rare elements with large magnetic
dipole moments [37]. Similarly, by employing double-shot phase contrast imaging for atoms
in an external parabolic potential trap it is possible to determine spin-dependent densities, the
spin susceptibility and the compressibility of particles [38]. Hence, systematic studies of the
disorder-induced spin-asymmetric changes of the thermodynamic properties of such systems
are possible. In the second part of the paper, we report results for spin-imbalanced systems, i.e.
when each spin population has an individual chemical potential. Spin-imbalanced fermionic
systems have been investigated experimentally [39-41] and theoretically [42-46] either in
optical lattices or in the case of a trap without disorder. Spin-dependent disorder adds a new
tool to the examination of correlation effects in spin-imbalanced fermionic systems.

2. Hubbard model and spin-dependent disorder

In the following we will study interacting fermions in a random environment, modeled by the
Anderson—Hubbard Hamiltonian with local, spin-dependent disorder:

HZZfije,-Taejo —Zﬂaﬁia‘*‘zéiaﬁia‘*‘UZﬁmﬁu- (1)
io io i

ij,o

® The statement that a Mott—Hubbard metal-insulator transition can take place only at half-filling is correct only
in the case of continuous probability distributions of the disorder as employed in our paper. Indeed, disorder in a
binary alloy A, B;_, with a bimodal probability distribution leads to a band splitting at sufficiently strong disorder,
giving rise to alloy subbands. For filling factors v = x or 1 + x, the lower or upper alloy subband is then half-filled
and the system becomes a Mott insulator at strong interactions, with a correlation gap at the Fermi level. In this
case a Mott—Hubbard transition takes place off half-filling [30].

New Journal of Physics 15 (2013) 045031 (http://www.njp.org/)


http://www.njp.org/

4 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Here ¢, (8}0) is the annihilation (creation) fermionic operator, 7;, = 8}0 Cio 1s the particle number
operator, #;; 18 the hopping matrix element, U is the local interaction and p, is the chemical
potential for particles with spin o . In the model where the total number of fermions is conserved,
the chemical potentials of the two species obey 1, = (t_, = . In the model where the numbers
of fermions with different spin are individually conserved, the chemical potentials 1, can differ.

The disorder is represented by random local potentials ¢;, that are distributed according
to a box probability density P(¢;,) = 1/A, for |€;,| < A, /2, and zero otherwise (‘continuous
disorder’). Here A, is the maximal energy difference between the local energies for a given
spin direction and thus provides a measure of the disorder strength. Averages over the disorder
are calculated by (---)ais =[], f de, P(€,)(: - -), whereby the study of Anderson localization
within the one-particle Green function formalism is excluded [47-49].

It is interesting to note [23]7 that by introducing the z-component of the
magnetization operator 711; = i1;4 — i;; and the local particle number operator #1; = i1;4 + 71, the
Anderson—Hubbard Hamiltonian for the model where the total number of fermions is conserved
takes the form

H=Ztij3;78jg—Z,U,;kﬁi+2h;kﬁ1i+UZﬁmﬁi¢, (2)
ij,o i i i
where u!=pu — (€4 +¢€;)/2 and h = (€;4 —¢€;)/2. The Hamiltonian (2) has a natural
interpretation: it describes fermionic atoms moving in a random chemical potential 1} and a
random Zeeman magnetic field 4} which are correlated, since

* 0k 1 2 2
(i) = 1o (A = ADS. 3)
When A | = A, we arrive at the Anderson—-Hubbard model with spin-independent disorder [50].

3. Dynamical mean-field theory

We solve the Hamiltonian (1) within dynamical mean-field theory (DMFT) [27, 51]. Hence all
local dynamical correlations due to the local interaction are fully taken into account. However,
non-local correlations in position space are absent. Long-range order in space can be included
within the DMFT, but this will not be the case in the present investigation.

In the DMFT scheme the local Green function G, is determined by the bare density of
states (DOS) N°(e) and the local self-energy X, as G,, = [ deN°(e)/(iw, + fte — Tgn — €).
Here the subscript n refers to the Matsubara frequency i®, =i1(2n + 1)n/8 for the temperature
T, with 8 = 1/T. Within DMFT the local Green function G, is determined self-consistently by

4

[ D [eon ] conct e 5601
Gon = _<<Ctmc;n>>dis = _< z e ,
dis

[ Dlco, ;] eAileo.c5.95 )

together with the k-integrated Dyson equation G| = G ! + ¥, [27, 52]. The single-site action

A; for a site with the ionic energy ¢; € [—%, %] has the form

B B
Ailco 3. G, =D ch 00t ean— f dremno(r)—% > / dzcl(t)es (), (T)e_o(T),
n,o o 0 o 0

S

7 We thank Richard Scalettar for discussions concerning this interpretation.
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where we used a mixed time/frequency representation for Grassmann variables c,, ci. In
equation (4) the average over the quantum states with Boltzmann distribution (inner bracket)
and over the disorder (outer bracket) is taken. In the non-interacting case (U = 0), the DMFT
equations reduce to those of the coherent potential approximation [53-55].

In the following we employ a semicircular model—DOS N°(¢) = (8/7 W?)\/W2/4 — €2.
The half-bandwidth W = 2 (corresponding to a hopping amplitude ¢ = 1/2) is taken as the unit
of energy. The one-particle Green function in equation (4) is calculated by solving the DMFT
equations iteratively [56, 57] using Hirsch—-Fye quantum Monte-Carlo (QMC) simulations [58].

We now discuss and compare results for different types of disorder: (i) spin-independent
disorder, where A| = Ay = A, and (i1) spin-dependent disorder with A, = A and A, =0. In
both cases A is a measure of the disorder strength. They represent extreme situations and thereby
illustrate the most important differences between spin-independent and spin-dependent disorder.
Intermediate cases can be studied in the same way.

In the model where the total number of fermions is conserved, the chemical potential
w is fixed to keep the total number of fermions per site constant: n =n, +n,, where n, =
((Zi Nis))ais/NL and Np is the number of lattice sites. The numerical investigations were
performed for the densities n = 0.3, 0.5 and 0.7.% Qualitatively, all three cases lead to similar
results. For the purpose of illustration, we present results only for n = 0.5.

In the model where the numbers of particles with different spin o are separately conserved,
the chemical potentials ., are fixed individually to keep the number of fermions with spin o per
site constant. The numerical investigations were performed for (n4, n;) = (0.2, 0.3), (0.3, 0.2),
(0.2,0.5) and (0.5, 0.2). For the purpose of illustration we here present results for (0.5, 0.2)
since, qualitatively, all cases lead to similar thermodynamic properties.

4. Constant total number of fermions

4.1. Finite magnetization caused by spin-dependent disorder

The most striking effect caused by spin-dependent disorder is the appearance of a finite
magnetization m(A,T,U) = ((d_, m;))as/NL for A >0 at arbitrary temperatures 7 and
interaction values U, as shown in the upper panel of figure 1 for the lowest temperature studied
here, T = 0.06. The magnetization m is seen to grow monotonically as the spin-dependent
disorder strength A is increased. The increase of m is slightly stronger for larger values of
the interaction U. It should be noted that the origin of the magnetization is not due to electronic
correlations, but is a pure one-particle effect, which for a symmetric DOS occurs only away
from half-filling (n # 1). Namely, spin-dependent disorder leads to a symmetric broadening of
the spin subband on which it acts (here the down-spins), whereby the number of spin-down
particles increases while the number of spin-up particles decreases since the total number of
particles remains constant (that is, the two spin populations have a common chemical potential
as shown in the lower part of figure 1). This then leads to a finite magnetization. Here we
assumed that the system is able to relax to the new equilibrium state by means of spin-flip
processes which are provided, for example, by the spin—orbit interaction or inelastic dipolar

8 The error bars shown in figures 1-4 and 6-9 indicate the uncertainties due to Monte Carlo sampling and are
determined by the standard mean deviations. In figures 2, 4 and 9 the error bars are smaller than the line width and
are therefore not visible. In figures 5, 7, 10 and 11 the error bars are obtained by the linear regression method since
the derivatives were obtained by fitting straight lines.
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Figure 1. Constant total number of fermions. Upper panel: increase in
magnetization m as a function of spin-dependent disorder A for interactions
U =0.1,1.0,4.0at 7T = 0.06. Similar results are obtained from a non-interacting
model where the bandwidths of particles with opposite spin differ by energy §
(see text). Lower panel: schematic drawing of the influence of spin-dependent
disorder. The disorder leads to a broadening of the respective spin subband.
Due to the conservation of the total number of fermions, finite magnetization
is built up.

collisions [37], but which are not explicitly included in the model Hamiltonian (1). The weak
influence of U on the magnetization may be attributed to the flow of spectral weight induced by
the correlations.

For a symmetric DOS and a half-filled band, the number of states below the Fermi
energy Er =0 remains constant when A 1is increased; this holds for any interaction U. The
magnetization is then zero. This effect was clearly observed in our numerical simulations, but
is not presented here.

The increase of the magnetization m with increasing spin-dependent disorder A may be
understood already within a simple model without interactions (U = 0) where the particles with
different spin orientation have different bandwidths [59-61]. Namely, if we assume that the
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Figure 2. Constant total number of fermions: magnetization induced by spin-
dependent disorder as a function of temperature 7 for different values of the
interaction U and disorder strength A.

DOS of the system is given by
Wo
— for |e| < -
Ny =" (©6)

0 for le|>—2,
2

where W, = W and W, = W + 4, the magnetization at T = 0 is given by

m(n,8):(1—n)2W+5. (7

The increase of the magnetization as a function of the difference of the bandwidths, 6, at 7 =0
is shown by the full black curve in the upper panel of figure 1. A very similar result, indicated by
a black dashed curve in the same figure, is obtained for a semi-elliptic DOS with spin-dependent
bandwidths N2(e) = (8/7 W?)/W2/4 — 2. Both curves closely resemble those calculated for
the Hamiltonian (1), except for the turning point observed in m(A, T, U) for U =0.1, 1.0.
Apparently, this feature is due to the scattering of the electrons by the random inhomogeneities,
which is included in the frequency-dependent self-energy of the local Green function.

4.2. Thermodynamic properties

As the temperature increases, the Fermi—Dirac distribution is smeared out and the arguments for
the appearance of a finite magnetization due to spin-dependent band broadening at a constant
chemical potential, although still valid, become less stringent. Indeed, as shown in figure 2
the magnetization slowly decreases with increasing temperature as 1/7 for all values of the
interaction U and disorder strength A > 0.

New Journal of Physics 15 (2013) 045031 (http://www.njp.org/)
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Figure 3. Constant total number of fermions: double occupation d as a function
of the temperature 7' for different values (A =0, 1, 3, 5) of spin-independent
disorder (left) and spin-dependent disorder (right); upper panel: U = 0.1; lower
panel: U = 4.

The magnetization induced by the disorder influences the thermodynamic properties of the
system. In figure 3 we compare the temperature dependence of the average double occupation
d =), ({ni4n;,))ais/ N1 for spin-independent disorder (left panel) and spin-dependent disorder
(right panel), respectively. For spin-independent disorder and weak interactions, e.g. U = 0.1,
an increase of the disorder A leads to a corresponding increase of d, i.e. on average more energy
levels below the Fermi energy are occupied by two fermions with opposite spins. For increasing
U a minimum appears in d(7") which corresponds to a maximum in the local moment per

site S = \/<Zi<l/hi2)>dis/NL = +/n —2d. This is seen clearly for U =4 in figure 3. Increasing
the disorder A reduces the value of the local moment even in the presence of strong interactions
(U = 4), when d is very small. Only at very low temperatures and U = 4 can we see an opposite
trend.

In the case of spin-dependent disorder (right panel of figure 3), the double occupation is
always found to be suppressed by the disorder A. This is an effect of the finite magnetization of
the system. As a consequence the local moment increases. We also see that the local minimum
of d is shifted to lower temperatures when A is increased. Whether it disappears at 7 = 0 cannot
be decided here since we are not able to run QMC simulations at lower temperatures.

Next, we compare the value of the DOS at the chemical potential N(w) for different
disorder strengths (figure 4). As expected, an increase of the disorder reduces the DOS. We also
see that this decrease is stronger for spin-independent disorder because the random potential acts

New Journal of Physics 15 (2013) 045031 (http://www.njp.org/)
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Figure 4. Constant total number of fermions: DOS at the chemical potential
as a function of the temperature 7' for different values (A =0, 1, 3, 5) of spin-
independent disorder (left) and spin-dependent disorder (right); upper panel:
U = 0.1; lower panel: U = 4.

equally on both spin subbands. When the temperature is lowered, the DOS increases similarly
in both cases due to the enhanced quantum coherence of the system.
Static susceptibilities provide useful information about possible phase instabilities of the
system and their response to external fields. Therefore, we now compute
m

o the ferromagnetic (FM) susceptibility xpm = ‘3—,2

in the presence of an external magnetic field 4;

‘ , where m is the magnetization density
h—0

‘;’Z“ , where my =nuy —npy is
U hg—0

the staggered magnetization density on a bipartite lattice with non-equivalent sites A and
B in the presence of a staggered magnetic field g, where nyg) = ((ZieA(B) Nis))dis; and

e the antiferromagnetic (AFM) susceptibility yapm =

e the density susceptibility (compressibility) x. = S—Z, where 7 is the particle number density
at the chemical potential p.

The magnetic responses in the FM and AFM channels differ significantly for spin-
independent and spin-dependent disorder, respectively: both susceptibilities are reduced by
spin-independent disorder, at least for weak interactions (U = 0.1, 1), as seen in the upper
left panels of figures 5 and 6. For strong interactions in the presence of spin-independent
disorder (U = 4, lower left panels of figures 5 and 6), the FM and AFM susceptibilities behave
differently, in particular at the lower temperatures. Namely, they exhibit Curie-like behavior, i.e.
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n=0.5

spin-independent disorder spin-dependent disorder

4

Figure 5. Constant total number of fermions: inverse FM susceptibility as a
function of the temperature 7 for different values (A =0,1,3,5) of spin-
independent disorder (left) and spin-dependent disorder (right); upper panel:
U =0.1; lower panel: U =4.

xem ~ 1/ T, and increase with increasing disorder. This is due to the formation of local moments
and corroborates the temperature behavior of the double occupation discussed earlier. Indeed,
at low enough temperatures and for strong interactions the double occupation d is reduced by
spin-independent disorder.

A similar Curie-like behavior of the FM susceptibility was previously found in the two-
dimensional Hubbard model with random box potential [62]. However, in this case neither the
AFM susceptibility nor the averaged local moment show any unusual behavior. Therefore we
conclude that in contrast to high dimensions, where correlated electrons in random potentials
form local moments, the behavior in two dimensions is different and is yet unexplained.

In the case of spin-dependent disorder an increase of the disorder strength A reduces both
magnetic susceptibilities (see the right panels of figures 5 and 6). Namely, due to the magnetic
polarization induced by the spin-dependent disorder the response of the system to a magnetic
field is weaker.

In figure 7 we compare the temperature dependence of the compressibility of a system
in the presence of spin-independent and spin-dependent disorder, respectively. In both cases
disorder reduces the compressibility and, as in the case of the DOS, the effect of spin-
independent disorder is stronger. We also observe an enhancement of the statistical fluctuations
within the Monte Carlo method at stronger interactions.

Finally, we note that at any given temperature 7 the reduction of the compressibility y. by
disorder is smaller in the strongly correlated case than in the weakly correlated case. This holds

New Journal of Physics 15 (2013) 045031 (http://www.njp.org/)
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0.1

=4

Figure 6. Constant total number of fermions: inverse AFM susceptibility as
a function of the temperature 7 for different values (A =0, 1, 3,5) of spin-
independent disorder (left) and spin-dependent disorder (right); upper panel:
U =0.1; lower panel: U =4.

true for both types of disorder, and is due to the fact that a strong repulsive interaction leads to
a rigidity of the system which makes it less sensitive to the influence of disorder.

The non-interacting model discussed in section 3 where particles with different spin have
different bandwidths [59] yields qualitatively similar results for the FM susceptibility and the
compressibility. Although such a toy model cannot explain the details of the magnetization, it
appears to be quite useful for explaining qualitative features of systems with spin-dependent
disorder.

5. Spin-imbalanced fermions

In the case of spin-imbalanced fermions, the number of fermions with spin o is conserved
individually. The magnetization m =n; —n is then constant, i.e. does not depend on the
thermodynamic variables and parameters of the model. In figure 8 we compare the temperature
dependence of the average double occupation d of the spin-imbalanced fermions for spin-
independent disorder (left column) and spin-dependent disorder (right columns), respectively.
For spin-independent disorder in the presence of a weak interaction (U = 0.1), an increase of
the disorder strength A leads to a corresponding increase of d, i.e. on average more energy levels
below the Fermi energy are occupied by two fermions with opposite spins. For increasing U, a
minimum appears in d(7") which corresponds to a maximum in the local moment. This is seen
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Figure 7. Constant total number of fermions: compressibility x. as a function
of the temperature 7 for different values (A =0, 1, 3, 5) of spin-independent
disorder (left) and spin-dependent disorder (right); upper panel: U = 0.1; lower
panel: U =4.

clearly for U = 4 in the left column of figure 8. Therefore a maximum of the local moments is
found in both models considered here. In the case of spin-dependent disorder (right columns of
figure 8), the double occupation is, in general, suppressed by the disorder A. This is an effect
of the finite magnetization of the system, which is here imposed by fixing the individual spin
densities. As a consequence, the local moment increases. We also see that the local minimum
of d(T) is shifted to lower temperatures when A is increased. Whether it disappears at 7 =0
cannot be decided here since, as mentioned earlier, we are not able to run QMC simulations
at lower temperatures. It is interesting to note that the behavior of the double occupation is
qualitatively similar in both models.

In figure 9 we compare the values of the spin-resolved DOS at the chemical potential for
different types of disorder and different disorder strengths. Spin-independent disorder always
reduces the DOS, whereas spin-dependent disorder only reduces the DOS of the corresponding
spin subsystem. For weak interactions the DOS of the opposite spin subsystem is almost
unchanged. Only at stronger interactions (U =4) does the disorder in one spin subsystem also
influence the DOS of the opposite spin subsystem (but only weakly). This correlation effect is
expected, since the two spin subsystems are coupled by the on-site interaction U'.

In the case of spin-imbalanced fermions, it is useful to discuss a compressibility matrix [63]

<anU(Iu’T7 //Ll,a T)
Xcoo' =

9 ) = ﬁ((ﬁ(rﬁa’> - (ﬁa><ﬁn’>>dis/NL’ (8)
Mo T
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Figure 8. Spin-imbalanced fermions: double occupation d as a function of
the temperature 7 for different values of A =0, 1, 3,5 for spin-independent
disorder (left column) and spin-dependent disorder (right columns); upper
panels: U = 0.1; lower panels: U = 4. The density of particles is n, = 0.2 and
I’lT =0.5.

where 11, = ) _. fi;,.. Its off-diagonal elements provide a measure of density—density correlations
between different spin subsystems. We note that the matrix is symmetric xcq; = Xcj1. AtU =0
one has x4, =0.

In figure 10 the diagonal compressibilities in different spin channels are shown. In the
case of spin-independent disorder (left columns in figure 10), the diagonal compressibilities
are found to be reduced in both spin subbands for increasing disorder strength A. Due to the
imbalance of the spin population, one has xc1r # Xcyy-

In the case of spin-dependent disorder, the spin-down compressibility x.,, is reduced when
the disorder A is increased; this holds for any interaction strength U, see upper figure, right
columns in figure 10. By contrast, the spin-up compressibility x.44 remains almost unchanged
at weak interactions. But for larger U it decreases for increasing disorder A, see lower figure,
right columns in figure 10. The disorder-induced changes in x4, are an interaction effect, since
the disorder A acts only on the spin-down subsystem.

For spin-imbalanced fermions we observe a distinctive qualitative difference between spin-
independent and spin-dependent disorder. Namely, as for the model where only the total number
of fermions is kept constant, we find that at any given temperature 7 the reduction of the
compressibility y. by spin-independent disorder is less in the strongly correlated case than in
the weakly correlated case (quantitatively this effect is even much stronger here, see figure 7).
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Figure 9. Spin-imbalanced fermions: spin resolved DOS for spin down (upper
figure) and spin up (lower figure) at the chemical potentials as a function of
the temperature 7 for different values (A =0, 1, 3, 5) of the spin-independent
disorder (left) and the spin-dependent disorder (right); upper panels: U = 0.1;
lower panels: U = 4. The density of particlesis n, = 0.2 and ny =0.5.
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Figure 10. Spin-imbalanced fermions: diagonal compressibilities y.;, (upper
figure) and x.44 (lower figure) as a function of the temperature 7" for different
values (A =0, 1, 3,5) of spin-independent disorder (left columns) and spin-
dependent disorder (right columns); upper panels: U = 0.1; lower panels: U = 4.
The density of particlesisn;, =0.2 and ny =0.5.
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Figure 11. Spin-imbalanced fermions: off-diagonal compressibilities x.; 4+ as
a function of the temperature 7 for different values (A =0,1,3,5) of
spin-independent disorder (left columns) and spin-dependent disorder (right
columns); upper panels: U = 0.1; lower panels: U = 4. The density of particles
isn, =0.2 and ny = 0.5. Note that the relative error bars are of the same order
in all cases but the off-diagonal susceptibility is very small at weak interactions,
compare scales on the vertical axis.

But the opposite happens in the case of spin-dependent disorder: then the reduction of the
compressibility by disorder increases with increasing interaction strength U'.

In figure 11 we show the off-diagonal elements of the compressibility. As expected, their
absolute values increase with increasing interaction U. We also observe that for both types of
disorder an increase of the disorder strength leads to a reduction of the inter-spin correlations.
Although the off-diagonal elements of the compressibility are negative, the determinant of the
compressibility matrix is positive. Therefore, the system is stable against phase separation. The
effect of disorder on the off-diagonal compressibilities at a given temperature 7 is similar to
that of the diagonal compressibilities.

6. Conclusions and outlook

In summary, we explored the thermodynamic properties of correlated fermions in the presence
of spin-independent and spin-dependent disorder within DMFT. We discussed two models
where either the total number of fermions is conserved or the number of fermions with different
spin projection is individually conserved. These two cases can be realized in experiments on
cold atoms in optical lattices.
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In the first model we found that, in contrast to spin-independent disorder, spin-dependent
disorder induces FM polarization. However, instead of a Zeeman—Stoner-type shift of the
subbands, which would be observed in the presence of an external magnetic field, a spin-
dependent broadening takes place.

In the second model we showed that disorder which acts only on fermions with one
particular spin direction nevertheless also affects the properties of particles with the opposite
spin direction; this effect is more easily observed at strong interactions. Therefore, the
investigation of the spin-resolved densities of states and spin-resolved compressibilities will
provide useful quantitative information about correlations between the two spin subsystems.
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