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ABSTRACT

Equilibrium thermodynamics is grounded in the law of energy conservation, with a specific focus on how systems exchange energy with their
environment during transitions between equilibrium states. These transitions are typically characterized by quantities such as heat absorption
and the work needed to alter the system’s volume. This study is inspired by the potential to develop an analogous, straightforward
thermodynamic description for systems that are out of equilibrium. Here, we explore the global energy exchanges that occur during
transitions between these nonequilibrium states. We study a system with heat flow and an external (gravity) field that exhibits macroscopic
motion, such as Rayleigh–B�enard convection. We show that the formula for system’s energy exchange has the same form as in equilibrium. It
opens the possibility of describing out-of-equilibrium systems using a few simple laws similar to equilibrium thermodynamics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0239207

Consider the phenomenon where water, despite being cooled
below its freezing point, remains in a liquid state—an unstable condi-
tion known as supercooling. A minor disturbance, such as a simple
shake, can trigger a rapid transition to solid ice. Equilibrium thermo-
dynamics provides a comprehensive framework to understand such
behaviors, predicting the stability of equilibrium states by analyzing
energy flow and exchanges with the surrounding environment.2 Yet,
what about systems that are out of equilibrium? Can their stability also
be inferred from energy considerations?

Motivated by this question, this paper explores the possibility of a
thermodynamic-like theory for nonequilibrium systems. Specifically,
we examine systems like a gas undergoing macroscopic heat-driven
convection (illustrated in Fig. 1), which can exhibit abrupt state
changes in response to minor temperature variations.10,14 Developing
a predictive theory for these nonequilibrium transitions, akin to equi-
librium thermodynamics, could profoundly enhance our understand-
ing of atmospheric phenomena and improve designs in areas like
steady state chemical reactors.13

To develop a thermodynamic-like theory beyond equilibrium, we
concentrated on a basic aspect of equilibrium thermodynamics: energy
balance. This concept is represented in thermodynamics by the first law.
Energy is a fundamental physical quantity, and the energy balance beyond
equilibrium has been studied in many different contexts. The local (in
infinitesimally small volume) energy balance is the foundation of linear
irreversible thermodynamics.6 There is a vibrant research field of stochas-
tic thermodynamics related to energy balance for small systems.7,23,28,29,31

However, examining the total energy balance in macroscopic
nonequilibrium systems has received limited attention. Even for equi-
librium systems, hydrodynamic-based examination of the total energy
balance in transitions between macroscopic equilibrium states has
been performed recently.30 Beyond equilibrium, a similar approach
has been used to study the total energy balance for a quiescent fluid in
a heat flow.15–17,20 These studies show that in a mixture of gases in the
presence of heat flow or a gravity field, the total energy balance has a
simple form, dE ¼ �dQþ �dW, with �dQ being the heat, and �dW is the
volumetric work. The total energy balance in these nonequilibrium
systems has the same form as in equilibrium thermodynamics. For
more complicated systems that contain macroscopic flow, such as ideal
gas between parallel plates in a shearing motion that exhibits nonequi-
librium phase transition,22 the energy balance, dE ¼ �dQþ �dW þ �dWw,
contains another term �dWw, which does not appear in equilibrium. It
represents the excess shear work of the plate that induces the shearing
motion of the gas.

It is worth mentioning that the term “first law” already appeared
in the context of systems with shearing flow.11,12 However, the term
“first law” used in Refs. 11 and 12 refers to the fundamental relation
solely for internal energy.4,5 The fundamental relation is another vivid
topic24,27 but is beyond the scope of the current paper.

It has been recognized that in steady state systems, there is a com-
ponent of the heat exchanged with the environment, in addition to the
steady state heat flow, known as excess heat and denoted as �dQ. This
excess heat may play a crucial role in developing a thermodynamic-
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like description of steady states.26 The excess heat by itself has been
recently studied by different researchers experimentally33 and
theoretically.1,3,8,9,21

On the one hand, the studies mentioned earlier offer a promising
foundation for achieving a thermodynamic-like description of nonequi-
librium states. On the other hand, one might be curious that one of the
most common systems has not been approached in a thermodynamic-
like manner. Indeed, heat-driven convection, which serves as a window
to understanding atmospheric phenomena and turbulent systems, still
awaits even basic study. A similar observation has been expressed
recently by Yoshimura and Ito34 who claim “Deterministic hydrody-
namic systems described by the Navier-Stokes equation are among the
least investigated subjects”. Nakagawa and Sasa also made similar obser-
vations discussing the concept of heat in nonequilibrium states.25

Following this line of reasoning, we derive the global energy bal-
ance for the nonequilibrium system depicted in Fig. 1. The presented
energy balance describes the transitions of the system due to the
change of boundary temperatures, the shape of the system, and the
shift in the gravity field. The resulting global energy balance mirrors
the first law of equilibrium thermodynamics and simplifies to the equi-
librium first law when transitions occur between equilibrium states.
Given that the system in Fig. 1 captures key features of atmospheric
dynamics, heat-driven convection, and turbulence, this achievement
represents a significant step toward formulating a thermodynamic-like
description for many out-of-equilibrium systems.

To understand how a nonequilibrium system exchanges energy
with its environment, we assume a hydrodynamic description of the
system.6 The total energy consists of macroscopic kinetic energy
(related to the macroscopic motion determined by the average velocity
field v in the system), ekin ¼ v2=2; internal, u, and gravitational energy
u. The total energy density per unit mass is defined as

e ¼ ekin þ uþ u: (1)

The flow of the energy is described by the corresponding flux,

Je ¼ qev þ P � v þ Jq; (2)

which includes convection (q is the volumetric mass density) and
fluxes of the energy due to mechanical work, P � v (the pressure tensor

is denoted by P), and the conductive heat flux, Jq. We do not rely on a
specific form of the pressure tensor or the heat flux. For example, the
expression for the pressure tensor is not restricted to that of a
Newtonian fluid, Pij ¼ pdij � gðrivj þrjvi � dij2divv=3Þ, which
includes the hydrostatic pressure p and the viscous term. Similarly, the
heat flux is not limited to Fourier’s law, Jq ¼ �jrT , which depends
on the temperature gradient and the heat conductivity coefficient.
Alternative forms of the pressure tensor and heat flux are possible in
the subsequent analysis. The evolution equations in hydrodynamics
take the form of a balance equation,

@

@t
f r; tð Þ ¼ �r � J r; tð Þ þ r r; tð Þ; (3)

where f is volumetric density, Jðr; tÞ is the flux, and rðr; tÞ is the source
term. We decompose J into a convective term, f ðr; tÞvðr; tÞ, and the
rest into a non-convective term,

J r; tð Þ ¼ f r; tð Þv r; tð Þ þ Jnc r; tð Þ; (4)

which is the definition of non-convective flux Jncðr; tÞ. In particular,
with

fe ¼ qe; (5)

Jnc;e ¼ P � v þ Jq; (6)

re ¼ q@tu; (7)

we obtain the total energy balance equation

@tqe ¼ �r � Je þ q@tu; (8)

with the flux of total energy, Je, given by Eq. (2). With

fu ¼ qu; (9)

Jnc;u ¼ 0; (10)

ru ¼ qv � ruþ q@tu; (11)

we get the external potential balance equation

@tqu ¼ �r � quvð Þ þ qv � ruþ q@tu: (12)

With

fekin ¼ qekin; (13)

Jnc;ekin ¼ P � v; (14)

rekin ¼ P: rv½ � � qv � ru; (15)

we get the kinetic energy balance equation

@t
1
2
qv2 ¼ �r � 1

2
qv2v þ P � v

� �
þ P: rv½ � þ qv � �ruð Þ: (16)

With

fu ¼ qu; (17)

Jnc;e ¼ Jq; (18)

ru ¼ �P : rv½ �; (19)

we obtain the internal energy balance equation

@tqu ¼ �r � quv þ Jq
� �� P: rv½ �: (20)

FIG. 1. Rayleigh–B�enard convection in a fluid. The figure illustrates the temperature
distribution and the resulting convective flow pattern in a fluid subjected to a temper-
ature gradient. The bottom boundary is at a higher temperature denoted by T2,
while the top boundary is at a lower temperature, T1. The temperature gradient,
combined with the gravitational field g acting downward, induces buoyancy-driven
convection. Colors schematically show temperature profile (red—hotter, blue—
colder).
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Notice that the sum of the last three cases gives the energy balance
equation (the first case above), because total energy is the sum of exter-
nal, kinetic, and internal energy. It is worth mentioning that the above
balance equations generalize the considerations presented in the
monograph of Mazur and de Groot6 to include the time dependent
external potential uðr; tÞ.

We further assume that the above-mentioned hydrodynamic
densities, fluxes, and sources along with the velocity field are known.
To determine the evolution of energies in practice, we would have to
supplement the above description with additional information (equa-
tions of states, constitutive relations, boundary conditions). However,
as we will see, for the investigation of the general structure of the sys-
tem’s energy exchange with its environment, the above quantities are
sufficient and other parts of hydrodynamic theory are not essential.
Energy is a fundamental physical quantity conserved on the most basic
level. It will be conserved independently of how the heat flux is related
to the temperature field or any other system’s properties, such as those
that are considered in rational and extended thermodynamics.18

In the previous section we discussed time dependent balance
equations defined at each point in space. These equations describe
both the system and its environment. By the system, we mean a part of
the space (a region), confined within the volume VðtÞ, which may
move over time. For example, in a steady situation presented in Fig. 1,
the gas inside the box has a time independent volume V. However, if
we consider the motion of the wall, the region V will change over time
according to the motion of its boundary, @VðtÞ.

In the attempt to construct global thermodynamics, we focus on
how the total energy inside the system, EðtÞ � Ð

VðtÞd
3r qðr; tÞeðr; tÞ,

changes during a process that occurs from an initial time ti to a final
time tf , dE � Eðtf Þ � EðtiÞ. For any energy represented by its volu-
metric density f ðr; tÞ, the total energy FðtÞ in the system is given by

F tð Þ �
ð
V tð Þ

d3r f r; tð Þ; (21)

and its change after the process by

dF � F tfð Þ � F tið Þ: (22)

From the time derivative of Eq. (21), we get the rate of change,

d
dt

F tð Þ ¼
ð
@V tð Þ

d2r n̂ r; tð Þ � vV r; tð Þf r; tð Þ þ
ð
V tð Þ

d3r
@

@t
f r; tð Þ;

(23)

where n̂ðr; tÞ is a vector normal to the surface @V , pointing outward
of the volume.30,32 Here, vVðr; tÞ represents the velocity of the bound-
ary, which is only defined for points r on the boundary of VðtÞ. Only
the normal component of the boundary, n̂ðr; tÞ � vV ðr; tÞ, contributes
to the rate of change. The last term in Eq. (23) can be expressed in
terms of the energy balance Eq. (3) with the non-convective energy
flux in Eq. (4), giving

dF
dt

¼
ð
@V tð Þ

d2r n̂ r; tð Þ � vV r; tð Þ � v r; tð Þ½ �f r; tð Þ

�
ð
@V tð Þ

d2r n̂ r; tð Þ � Jnc r; tð Þ þ
ð
V tð Þ

r r; tð Þ: (24)

The above formula for the change of energy in the system (understood
as a region in space) uses a small number of assumptions. In the

above-mentioned derivation, we used Gauss’s theorem,
Ð
VðtÞd

3rr
� Jncðr; tÞ ¼

Ð
@VðtÞd

2r n̂ðr; tÞ � Jncðr; tÞ. Essentially, up to this point, we
assumed that the energy densities are given by hydrodynamic balance
equations and calculated their changes in a process. From now on, we
assume that the system is closed, so there is no flow through the sur-
face @V . This means that the flux of the particles through the surface
@V vanishes in the reference frame where the surface element is at
rest,

n̂ r; tð Þ � vV r; tð Þ � v r; tð Þ½ � ¼ 0 for r 2 @V : (25)

As before, n̂ðrÞ is the vector normal to the surface, pointing outside
the region V. The above condition simplifies the rate of energy change
(24) to

dF
dt

¼ �
ð
@V tð Þ

d2r n̂ r; tð Þ � Jnc r; tð Þ þ
ð
V tð Þ

d3r r r; tð Þ: (26)

By integrating the rate of change over time, we get the change of
energy, dF � Fðtf Þ � FðtiÞ ¼

Ð tf
ti
dFðtÞ=dt, in the following form:

dF ¼ �
ðtf
ti

dt
ð
@V tð Þ

d2r n̂ r; tð Þ � Jnc r; tð Þ

þ
ðtf
ti

dt
ð
V tð Þ

d3r r r; tð Þ: (27)

The above two equations describe the energy change of a closed
hydrodynamic system. We use the former equation to study steady
state and the latter equation to study energy exchange during transi-
tions between steady states. In further analysis, we assume slip bound-
ary conditions on the boundaries of a closed system. This means that
on the wall, the transverse components of the pressure tensor vanish,

n̂ rð Þ � P rð Þ � 1� n̂ rð Þn̂ rð Þð Þ ¼ 0 for r 2 @V ; (28)

where n̂ðrÞn̂ðrÞ is a three-dimensional matrix with components
n̂iðrÞn̂jðrÞ. The no-slip boundary condition can also be used without
changing the main result of the paper in the context of a Rayleigh–
B�enard system.

The above assumptions are sufficient to generalize the first law of
thermodynamics to nonequilibrium closed systems including the sys-
tem shown in Fig. 1. The application of Eq. (26) to the case of external,
kinetic, internal, and total energy [cf. Eqs. (5)–(19)] yields the
following:

dU
dt

¼
ð
V tð Þ

d3r qv � ruþ
ð
V tð Þ

d3r q@tu; (29)

dEkin
dt

¼ �
ð
@V tð Þ

d2r n̂ r; tð Þ � P � v þ
ð
V tð Þ

d3r P: rv½ �

�
ð
V tð Þ

d3rqv � ru; (30)

dU
dt

¼ �
ð
@V tð Þ

d2r n̂ r; tð Þ � Jq r; tð Þ �
ð
V tð Þ

d3r P: rv½ �; (31)

dE
dt

¼ �
ð
@V tð Þ

d2r n̂ r; tð Þ � Jq r; tð Þ

�
ð
@V tð Þ

d2r n̂ r; tð Þ � P � v þ
ð
V tð Þ

d3r q@tu: (32)
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All of the above rates (left hand side) vanish in a steady state, and
the above equations give essential information on the energy balance
at a given steady state.

Let us start with Eq. (29) for the external potential energy. At a
steady state, the external potential does not change, @tu ¼ 0.
Therefore, Eq. (29) yieldsð

V tð Þ
d3r qvst � ru ¼ 0: (33)

It follows that the gravitational field globally does not perform work in
a steady state, because for a homogeneous gravity field pointing down-
ward in the vertical z-coordinate,ru ¼ êzg holds, and Eq. (33) results
in the vanishing of the center of mass velocity,

Ð
VðtÞd

3r qvst ¼ 0:
Therefore, in the reference frame where the boundaries of the system
are immobile, the center of mass velocity vanishes, the position of the
center of mass is constant and gravity does not perform work. This
conclusion also holds for any potential field, like the gravity field
around the earth, in a system with the mass continuity equation
@tq ¼ �rðqvÞ.

Equation (33) simplifies the steady state form of Eq. (30).
Moreover, the system is closed, so on the surface, we have n̂ðr; tÞ
� vst ¼ 0; and the application of the slip boundary conditions given by
Eq. (28) yields ð

@V tð Þ
d2r n̂ r; tð Þ � Pst � vst ¼ 0: (34)

The last two equations applied to Eq. (30) at steady state, where
dEkin=dt ¼ 0, yield ð

V tð Þ
d3r Pst: rvst½ � ¼ 0: (35)

The above-mentioned term appears locally in hydrodynamic equations
for kinetic and internal energy balance (16) and (20). It describes the
work of mechanical forces inside the fluid, typically appearing during
expansion and viscous dissipation. For example, in the case of a
Newtonian fluid, the pressure tensor consists of both hydrostatic and
viscous components, Pij ¼ pdij � gðrivj þrjvi � dij2divv=3Þ.
Substituting this into Eq. (35) leads to the conclusion that viscous dissi-
pation (which is positive) is balanced by the hydrostatic term,Ð
VðtÞd

3r pdivv: Since divv represents the rate of the change of the local
volume, this term describes the local work done by the gas during
expansion at various points in the system. However, Eq. (35) indicates
that while expansion-dissipation processes exist locally in a steady
state, they cancel out globally, resulting in no net effect of these two
processes for the total energy balance.

Finally, the vanishing of the global mechanical work inside the
fluid given by Eq. (35) simplifies the steady state form of Eq. (31),
which in steady state becomesð

@V tð Þ
d2r n̂ r; tð Þ � Jstq r; tð Þ ¼ 0: (36)

This implies that although heat may locally enter or leave the system
in a steady state, the total heat does not flow into the system.
Consequently, there is no need to introduce the notion of “excess
heat,”26 which is the heat in addition to the constant steady state heat
flux.

It is worth noting that Eqs. (33)–(36) also hold for quasi-steady
states, i.e., when there exists a timescale for which the system can be
effectively treated as being in a steady state. In this case, we would con-
sider time averages of Eqs. (29)–(32). With a similar reasoning, we
obtain Eqs. (33), (34), and (36) with the symbol ‘st' denoting the aver-
age over a sufficiently long timescale. Equation (35) would change toÐ
VðtÞd

3r P: ½rv�� �st ¼ 0, with P: ½rv�� �st
denoting the time average

of P: ½rv� in a given quasi-steady state.
The above-mentioned equations apply to a steady state with con-

vection that is schematically shown in Fig. 1 and also to other steady
states including, e.g., those with much more complicated patterns of
temperature and velocity fields.19 These steady state equations give
important insight into the rate of the global energy exchange of such
systems with their surroundings. From the perspective of the global
energy of the system, gravity does not perform work, there is no global
compression-dissipation, and there is no heat. Thus, from the perspec-
tive of global energy, the system appears to be in equilibrium (no
global flux of heat, no global work).

In what follows, we study the energy exchange in transitions
between steady states. We assume that at the initial time ti, the system
is at a steady state, which is then disturbed by a small change of bound-
ary temperatures, external gravitational field, or the motion of the sur-
rounding wall. After time tf , the system reaches another steady state.
The change in energy is described in this situation by Eq. (27), which
applied to the cases of external, kinetic, internal, and total energy [cf.
Eqs. (5)–(19)] yields

dU ¼ ��dWu þ �dWdtu; (37)

dEkin ¼ �dMS � �dPV þ �dWu; (38)

dU ¼ �dQþ �dPV ; (39)

dE ¼ �dQþ �dMS þ �dWdtu; (40)

where we used the following definitions of the heat differential,

�dQ ¼ �
ðtf
ti

dt
ð
@V
d2r n̂ � Jq tð Þ; (41)

volumetric mechanical work differential,

�dPV ¼ �
ðtf
ti

dt
ð
V tð Þ

d3r P: rv½ �; (42)

mechanical surface force differential,

�dMS ¼ �
ðtf
ti

dt
ð
@V tð Þ

d2r n̂ � P � v; (43)

potential work differential,

�dWu ¼ �
ðtf
ti

dt
ð
V tð Þ

d3rqv � ru; (44)

and potential source differential,

�dWdtu ¼
ðtf
ti

dt
ð
V tð Þ

d3r q@tu: (45)

Formula (40) is the main result of the paper. It expresses the balance of
total energy and is a generalization of the first law of equilibrium ther-
modynamics. The total energy changes due to heat, work on the
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surface of the system, and the work of the external potential field.
Without the gravity field (�dWdtu ¼ 0) and neglecting macroscopic
motion (dE ¼ dU), the above-mentioned formula reduces to the equi-
librium first law, dU ¼ �dQ� pdV , where we use the fact that under
these conditions, we get �dMS ¼ �pdV .16

This study is driven by the possibility of extending thermody-
namic principles to describe systems that are not in equilibrium. As a
preliminary step, we examine total energy exchange in a closed system
with macroscopic motion, exemplified by Rayleigh–B�enard convec-
tion. Consequently, we extend the first law of equilibrium thermody-
namics beyond equilibrium to the form dE ¼ �dQþ �dMS þ�dWdtu.
This is valid for transitions between steady states and for turbulent
states that exhibit steady-state-like behavior over time. For transitions
between equilibrium states, this generalization reduces to the equilib-
rium first law.

Two aspects are particularly noteworthy. First, the nonequilib-
rium first law that we derive retains the same form as the equilibrium
first law. The heat and work differentials are physically interpretable in
a manner akin to equilibrium thermodynamics. Second, in equilibrium
states, viscous dissipation, compression, heat, and mechanical work
vanish locally by definition. In nonequilibrium steady states, although
heat, surface mechanical work, and viscous dissipation-compression
may exist locally, they vanish globally.

This similarity enables a global thermodynamic description of
steady states, comparable to equilibrium systems, and paves the way
for studying heat and surface work differentials. Heat should be mea-
sured by monitoring the total heat on the system’s surface, and work
differentials by measuring the force on the wall and its displacement.
This approach opens avenues for numerical and experimental investi-
gations of out-of-equilibrium systems. These include systems relevant
to climate dynamics and steady state chemical reactors in industry. For
instance, understanding heat-driven convection is fundamental in
meteorology, where it plays a critical role in weather patterns and cli-
mate dynamics. In industrial applications, heat-driven convection is
essential in designing more efficient cooling systems, chemical reactors,
and energy generation processes.

Importantly, the heat in transitions between steady states has
never been studied for systems with heat-driven convection. This
reveals an entirely unexplored field of global thermodynamics, cur-
rently in its infancy. From the perspective of a potentially existing ther-
modynamic description of nonequilibrium states, we might be at a
similar juncture to where thermodynamics was when Carnot and
Clausius began studying heat differentials.

I thank Robert Hołyst and Paweł _Zuk for engaging in thought-
provoking conversations. Thanks to Natalia Pacocha for her work
in creating the graphics.
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