Tunneling current through insulating barrier

Karol Makuch

18.06.2013

EUROPEAN REGIONAL DEVELOPMENT FUND

Motivation

Resistivity is often first measured, the last understood...

What is current?

Lorentz model of electric current flow

No stationary state

electric field

Problem

Method

C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, J.Phys.C 4, 916 (1971)

For $t \leq t_0$ no hopping between metal and insulator:

metal insulator metal
$$H(t \le t_0) = \sum_{ij} t_{ij}^0 a_i^{\dagger} a_j - \sum_i \mu_i a_i^{\dagger} a_i$$

Equilibrium quantum statistical physics

At time t_0 hopping turned on:

$$\overset{\alpha}{\leftarrow} \overset{a}{\leftarrow} \overset{a}{\leftarrow} \overset{b}{\leftarrow} \overset{b}{\leftarrow} \overset{b}{\leftarrow} \overset{b}{\leftarrow} \overset{b}{\leftarrow} \overset{b}{\leftarrow} \overset{c}{\leftarrow} \overset{c$$

$$H(t > t_0) = H(t_0) + (Ta_{\alpha}^{\dagger}a_a + T'a_{\beta}^{\dagger}a_b + h.c.)$$

Nonequilibrium, nonstationary situation

But limit $t_0 \rightarrow -\infty$, stationary state

Equilibrium case: $t \le t_0$

Grand canonical partition function (thermodynamics):

Effectively three separate systems:

Current in the system: $t > t_0$

$$\begin{array}{c} \alpha & a \\ \circ & \circ \\ \circ & \circ$$

Operator calculating number of particles in the left metal

$$\hat{N}_L = \sum_{i \le \alpha} a_i^{\dagger} a_i \qquad |\gamma_N(t)\rangle = U(t, t_0) |\gamma_N(t_0)\rangle$$

$$\hat{N}_L(t) = U(t_0, t)\hat{N}_L U(t, t_0)$$

Current

$$J = e \frac{i}{\hbar} T \langle [a_{\alpha}^{\dagger}(t), a_{a}(t)] \rangle_{\rm eq}$$

Non-equilibrium Green function

$$G_{ij}(t,t') = -i\langle T_c \hat{a}_i(t) \hat{a}_j^{\dagger}(t') \rangle_{\text{eq}}$$

$$e^{-\beta H(t_0)}\hat{a}_i(t)\hat{a}_j^{\dagger}(t') = e^{-\beta H(t_0)}U(t_0,t)\hat{a}_iU(t,t_0)U(t_0,t')\hat{a}_j^{\dagger}U(t',t_0)$$

time ordering on Keldysh contour

$$T_c \hat{a}_i(t) \hat{a}_j^{\dagger}(t') = \begin{cases} \hat{a}_i(t) \hat{a}_j^{\dagger}(t') & \text{for } t >_c t' \\ -\hat{a}_j^{\dagger}(t') \hat{a}_i(t) & \text{for } t <_c t' \end{cases}$$

Green function for system with perturbation $H(t) = H_0 + H_1(t)$ $H_1(t \le t_0) = 0$

For
$$H_0$$
: $G_{0,ij}(t,t') = -i\langle T_c \hat{a}_i(t) \hat{a}_j^{\dagger}(t') \rangle_{\text{eq}}$

Hamiltonian in time evolution

For
$$H$$
: $G_{ij}(t,t') = -i\langle T_c \hat{a}_i(t) \hat{a}_j^{\dagger}(t') \rangle_{eq}$

Keldysh-Kadanoff-Baym equation:

$$G = G_0 + G_0 \Sigma G$$
 equilibrium!

 $\Sigma(t,t')_{ij} = \delta_c(t,t') \left(T\delta_{i\alpha}\delta_{aj} + T\delta_{ia}\delta_{\alpha j} + T'\delta_{i\beta}\delta_{bj} + T\delta_{ib}\delta_{\beta j} \right)$

Keldysh-Kadanoff-Baym equation in practice

yield four different physical (real times) Green functions.

Keldysh-Kadanoff-Baym equation => four equations for physical Green functions

$$G = G_0 + G_0 \Sigma G$$

In Fourier transform four algebraic equations

=> non-equilibrium Green function

Current

Assumptions:

- •stationary state
- •zero temperature
- •density of states in the insulator in the range of energy is strictly zero

$$J = -\frac{(2\pi)^2 eT^2 T'^2}{\hbar} \int_{\mu}^{\mu+eV} \frac{d\omega}{2\pi} G^A_{ba}(\omega) G^R_{ab}(\omega) \rho_{\alpha}(\omega) \rho_{\beta}(\omega)$$

$$\underset{\alpha}{\bullet} \underset{\alpha}{\bullet} \underset{b}{\bullet} \underset{b}{\bullet} \underset{\beta}{\bullet} \underset{\beta}{\bullet}$$
 density of states

Current:

built up from contribution of states with energy betweendepends not on momentum, but energy

Perspective – include interactions

Grand canonical Hamiltonian:

$$H = \sum_{ij} t_{ij} a_i^{\dagger} a_j - \sum_i \mu_i a_i^{\dagger} a_i$$

Extension:

$$H = \sum_{i,j} \sum_{\sigma=\uparrow,\downarrow} t_{ij} a_{i\sigma}^{\dagger} a_{j\sigma} - \sum_{i} \sum_{\sigma=\uparrow,\downarrow} \mu_i \hat{n}_{i\sigma} + \sum_{i} U_i \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

The main point: density of states for inhomogeneous equilibrium system (real space DMFT)