## Do bubbles screen?

#### Karol Makuch and John F. Brady

California Institute of Technology







## **Introduction - bubbles**



## **Introduction - bubbles**



Ultrasound produce growing cloud of bubbles

The cloud may mechanically destroy surrounding objects

#### damage of soft tissue (histotripsy)

Mechanics?

A. Maxwell et al. J. Acoust. Soc. Am., Vol. 130, No. 4, October 2011

## Simplified description of liquids with bubbles



Moore, D. *JFM, 1959, 6, 113-13*: For high Reynolds number

$$Re = \frac{aV}{\eta}$$

viscosity plays a role only in boundary layer around bubble.

Flow is irrotational

# Simplified description of liquids with bubbles

Configuration of bubbles (radii and positions):

$$X \equiv (a_1, \mathbf{R}_1, \dots, a_N, \mathbf{R}_N)$$



$$\nabla \times \mathbf{v} = 0$$

Irrotational flow

 $\mathbf{v} = \nabla \phi$ 

$$\nabla \cdot \mathbf{v} = 0$$

incompressible flow

Laplace equation with b.c. on the surfaces of bubbles:  $\Delta \phi = 0$ 

 $\hat{n}(\mathbf{r}) \cdot \nabla \phi|_{\mathbf{r} \in \partial \Omega^{\alpha}} = \dot{a}_{\alpha} + \hat{n}(\mathbf{r}) \cdot \dot{\mathbf{R}}^{\alpha}$ 

consequences...

Also used to describe bubbles in ultrasound field. d'Agostino, L. & Brennen, C. E. JFM, 1989, 199, 155-176 5

# Kinetic energy and dynamics of bubbly liquids



 $\dot{X}$  Motion of surface of bubbles determine motion of the fluid.

Therefore kinetic energy of the fluid determined by:

$$T = \frac{1}{2} \dot{X}^{\alpha} M^{\alpha\beta} (X) \dot{X}^{\beta}$$
Virtual (added) mass matrix

Virtual (added) mass matrix

Lagrangian

Hamiltionian

$$H(X, P) = \frac{1}{2} P M^{-1}(X) P$$

6

## Virtual mass matrix

 $T = \frac{1}{2} \dot{X}^{\alpha} M^{\alpha\beta} \left( X \right) \dot{X}^{\beta}$ 

•Determines kinetic energy of the bubbly liquid

- •Determines dynamics of bubbles
- •Depends on configuration of all bubbles in liquid
- •Determines mechanics "interactions" of bubbles through liquid

What is the range of interactions described by the virtual mass matrix?



## "Simple" problem

Quiescent fluid, no motion

 $\dot{X} = 0$ 

... and pressure (or force)  $\mathcal{F}^\beta$  appears suddenly on the bubble  $\beta$  .

What is acceleration of bubbles  $\ddot{X}^{lpha}$ ?

The answer follow from equation of motion:

$$\ddot{X}^{\alpha} = [M^{-1}(X)]^{\alpha\beta} \mathcal{F}^{\beta}$$

Question about range of interactions, more precisely: How acceleration of bubble  $\alpha$  depends on the distance from bubble  $\beta$ ?



## Virtual mass matrix – how to calculate?

Laplace equation can be solved using method of successive approximations. Interpretation:

To find virtual mass matrix  $\rightarrow$  sum of all possible paths:





many-body "interactions"

#### Result



$$\ddot{X}^{\alpha} = [M^{-1}(X)]^{\alpha\beta} \mathcal{F}^{\beta}$$

How acceleration depends on the distance from disturbed bubble?

In two body approximation:

$$[M^{-1}(X)]^{\alpha\beta} \sim \frac{1}{|\mathbf{R}^{\alpha} - \mathbf{R}^{\beta}|}$$



But with many-body interactions:

$$[M^{-1}(X)]^{\alpha\beta} \sim \frac{e^{-\kappa |\mathbf{R}^{\alpha} - \mathbf{R}^{\beta}|}}{|\mathbf{R}^{\alpha} - \mathbf{R}^{\beta}|}$$
  
Screening length:  $\kappa^{-1} = \frac{1}{\sqrt{4\pi an}}$ 

Mechanical screening in bubbly liquids!

### Summary

Bubbles influence their mutual motion, which is described by the virtual mass matrix.

Mechanical screening:

*Two body approximation:* 

$$[M^{-1}(X)]^{\alpha\beta} \sim \frac{1}{|\mathbf{R}^{\alpha} - \mathbf{R}^{\beta}|}$$

Rigorous result for cloud of bubbles:

$$[M^{-1}(X)]^{\alpha\beta} \sim \frac{e^{-\kappa |\mathbf{R}^{\alpha} - \mathbf{R}^{\beta}|}}{|\mathbf{R}^{\alpha} - \mathbf{R}^{\beta}|}$$

Ane Kosciuszko Foundaria

Consequences for:

- effective equations describing bubbly liquids

– histotripsy, ....