Active particles inside moving droplet

Karol Makuch

Institute of Physical Chemistry, Polish Academy of Sciences

Caltech

17.07.2019, Caltech, J. Brady group meeting

Motivation: experiments on antibiotic inhibition of bacteria growth inside droplets

Scheler, Makuch, Debski, Horka, Ruszczak, Pacocha, Sozański, Smolander, Postek, Garstecki, submitted:

Detection of bacteria in droplets (~20 000) by confocal microscope:

Clumps are visible as regions of much higher fluorescent intensity

Statistic of clumps

How many droplets have clumps? What is size distribution of clumps?

It is a motivation to study: statistics of clumps of active particles in a droplet with recirculating flow

Model of active particles inside droplet

•Swimmers (d=1 μ m, U₀=1 μ m/s) with Brownian rotation (τ_R =1/D_R)

•confined in a droplet (d=100 μ m) modeled by WCA potential (r_{cut}=2^{1/6}d),

•recirculating flow inside droplet: $A_{ext} \mathbf{v}_0(\mathbf{r})$,

no hydrodynamic interactions

•excluded volume interactions between particles (WCA)

We study clumping for different:

volume fractions, ϕ , rotation times, τ_{R} and amplitudes of external flow, A_{ext}

Measurements of statistics of clumps

Experiment: statistics from many droplets

Simulations: -achieve stationary state -measure over independent configurations to get clump statistics Stationary state

$$\rho_2(t) = \frac{1}{ND^2} \sum_{i=1}^N \mathbf{R}_i(t)^2,$$

$$\langle U \rangle (t) = \frac{1}{N} \sum_{i=1}^{N} |\mathbf{U}_i(t)|$$

$$|A|\exp\left[-t/t_a\right]/|B| < \epsilon_{rr}$$

$$t_{cut} = -t_a \log\left[\left|B\epsilon_{rr}/A\right|\right]$$

Independent measurements

Autocorrelation time of measured quantity determines whether two measurements are independent E.g. speed-speed autocorrelation:

$$\left\langle U\left(t+\tau\right)U\left(t\right)\right\rangle_{t} = \frac{1}{N}\sum_{i=1}^{N}\frac{1}{T}\int_{0}^{T}dt \left|\mathbf{U}_{i}\left(t+\tau\right)\right|\left|\mathbf{U}_{i}\left(t\right)\right|$$

$$\text{Speed-speed autocorrelation } \boldsymbol{\phi} = 0.25$$

Statistics of clumps

Clump: we define through distance r_{cut} in WCA potential

Summary

Done

✓automated procedure to measure clump statistics (volume fraction, rotation time, amplitude)

hoomd based code (thx: Austin and Stewart)

currently automated procedure for amplitude of torque

To do:

-change speed autocorrelation to autocorrelation of cluster size distribution (the quantity of interest) OR (can it be reduced $F(\vec{k},t) = \frac{1}{N} \langle \rho_{\vec{k}}(t) \rho_{-\vec{k}}(0) \rangle$ to density-density autocorrelation

-apply external flow instead of uniform torque (checked that it is easy modification of hoomd)

-from 2d to 3d - easy from the perspective of simulations in hoomd

